Anzeige
Anzeige

Künstliche Intelligenz

Roboter ohne Expertenwissen entwickeln

Beitrag drucken

Die Komplexität von Robotern nimmt stetig zu. Dies stellt Entwickler vor Herausforderungen und treibt die Entwicklungskosten in die Höhe. Im Projekt Q-Rock verfolgt das Robotics Innovation Center des Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) einen einen Ansatz, bei dem es Nutzern ohne Expertenwissen mithilfe von künstlicher Intelligenz möglich sein soll, maßgeschneiderte Robotersysteme für ihre Anwendungen zu entwickeln.

 

Der am DFKI Robotics Innovation Center für den Weltraumeinsatz entwickelte Roboter Mantis. Dank Q-Rock soll es zukünftig auch Nutzern ohne Expertenwissen möglich sein, kosteneffizient maßgeschneiderte Robotersysteme für ihre Anwendungen zu entwickeln. (Bild: DFKI GmbH/Foto: Annemarie Popp)

Der am DFKI Robotics Innovation Center für den Weltraumeinsatz entwickelte Roboter Mantis. Dank Q-Rock soll es zukünftig auch Nutzern ohne Expertenwissen möglich sein, kosteneffizient maßgeschneiderte Robotersysteme für ihre Anwendungen zu entwickeln. (Bild: DFKI GmbH/Foto: Annemarie Popp)

Das Projekt Q-Rock bildet den zweiten Schritt der X-Rock-Projektlinie des Robotics Innovation Centers und adressiert eine der grundlegenden Fragen in der Robotik: Wie kann ein Roboter das Wissen über sich selbst und seine Fähigkeiten eigenständig entwickeln, ohne dass ihm dies von einem Entwickler vorgegeben werden muss? Dabei setzt Q-Rock zum auf Methoden der künstlichen Intelligenz, wie Maschinelles Lernen und strukturelles Schlussfolgern. Zum anderen baut es auf der umfangreichen Datenbasis des Vorgängerprojekts D-Rock auf. Die Datenbank verbindet modellierte Software mit Hardware- und Verhaltensmodellen und unterstützt zudem durch umfassende Modularisierung – d.h. die effiziente Wiederverwendbarkeit von Komponenten – die Roboterentwicklung. „Q-Rock ist ein wichtiger Schritt hin zu sogenannten ‚integrierten KI-Lösungen‘. Dieser Ansatz wird es auch Menschen, die keine KI- oder Robotikexperten sind, ermöglichen, auf den eigenen Bedarf zugeschnittene Systeme zu entwickeln und einzusetzen. Davon können in Zukunft vor allem kleine und mittelständische Unternehmen profitieren, die sich so den Einsatz von Robotern auch in größerem Umfang leisten können, um langfristig wettbewerbsfähig zu bleiben“, sagt Prof. Frank Kirchner, Leiter des DFKI Robotics Innovation Centers.

Roboter lernt sich selbst kennen

Anders als in D-Rock wird in Q-Rock der Roboter selbst in die Lage versetzt, ausgehend von seinem Aufbau, die ihm zur Verfügung stehenden Fertigkeiten zu erforschen. Dabei nutzen die Bremer Wissenschaftler neue Ansätze, um basierend auf der modularen Roboterbeschreibung zunächst die Fähigkeiten von Teilkomponenten – z.B. eines einzelnen Sensors oder Gelenkes – zu ermitteln, und daraus die Fähigkeiten des Gesamtsystems abzuleiten. Mit Hilfe maschineller Lernverfahren und auf Basis der in D-Rock erarbeiteten Datenbank werden die erlernten Fähigkeiten dann automatisch in funktionale Einheiten gruppiert und zusammen mit einer semantischen Beschreibung in sogenannte Kognitive Kerne überführt. Diese Softwarebausteine enthalten die Verbindung zwischen den Fähigkeiten einer Hardware – z.B. denen eines Roboterarmes – sowie der daraus resultierenden möglichen Bedeutung im Verhalten, z.B. dem Greifen eines Objekts. So können verschiedene kognitive Kerne kombiniert werden, um komplexes Roboterverhalten, wie das Öffnen einer Tür, zu erzeugen. Die Verhaltensbausteine werden dann durch strukturelles Schlussfolgern wieder auf die Hardware abgebildet. Auf diese Weise ist auch ein Nutzer ohne entsprechende Expertise in der Lage, komplette Robotersysteme für bestimmte Anwendungsbereiche zu erzeugen. Dafür braucht er lediglich die Anforderungen an das Verhalten eines Systems zu spezifizieren. Q-Rock generiert dann auf dieser Basis automatisch die passenden Hardwarekombinationen aus der Datenbank.

Neue Konstruktions- und Planungsprozesse

Indem es das automatisierte Konstruieren von Roboterhardware anhand des gewünschten Verhaltens ermöglicht, werden zukünftig ganz neue Konstruktions- und Planungsprozesse für Roboteranwendungen realisierbar. Zudem lässt sich modellbasiert schlussfolgern, welche Aufgaben ein Roboter mit seiner gegebenen Hardware durch Kompositionen von Verhalten ausführen kann. Dadurch können die Ergebnisse des Projekts auch zur Qualifizierung von Hardware eingesetzt werden.


Das könnte Sie auch interessieren:

Ab und zu fehlte ein Schlüssel im Kloster der Franziskanerinnen der ewigen Anbetung von Schwäbisch Gmünd. Beim letzten Mal gab das den Impuls, anstatt neue mechanische Zylinder in die rund 220 Türen des Komplexes einzubauen, die alte Technik durch das Bluesmart-System von Winkhaus zu ersetzen.‣ weiterlesen

Mit 100,5 Punkten hält sich das IAB-Arbeitsmarktbarometer im November stabil und liegt weiter im leicht über der neutralen Marke. Auf europäischer Ebene sank der Frühindikator allerdings erneut.‣ weiterlesen

In einer neuen Expertise des Forschungsbeirats Industrie 4.0 untersuchen das FIR an der RWTH Aachen und das Industrie 4.0 Maturity Center den Status-quo und die aktuellen Herausforderungen der deutschen Industrie bei der Nutzung und wirtschaftlichen Verwertung von industriellen Daten und geben Handlungsempfehlungen für Unternehmen, Verbände, Politik und Wissenschaft.‣ weiterlesen

Im Forschungsprojekt FabOS soll eine KI-Bin-Picking-Anwendung entstehen, die ein verbessertes Erkennen, Greifen und definiertes Ablegen von Blechteilen in der Produktion ermöglicht.‣ weiterlesen

Die Digitalisierung des Qualitätsmanagements stellt Unternehmen vor Herausforderungen. Daher haben das Fraunhofer IPT und die FH Südwestfalen im Forschungsvorhaben 'Qbility - Quality 4.0 Capability Determination Model' ein datengetriebenes Reifegradmodell entwickelt, das die Anforderungen eines digitalisierten Qualitätsmanagements bei KMU adressiert.‣ weiterlesen

Das Bundesamt für Sicherheit in der Informationstechnik (BSI) empfiehlt sicherheitsrelevante Patches und Updates so schnell wie möglich, unter Abwägung des jeweiligen Risikos, einzuspielen, auch wenn im professionellen und insbesondere industriellen Umfeld automatisierte Software-Updates mit unerwünschten Einschränkungen der Funktionalität - etwa durch einen Neustart des Systems - verbunden sein können.‣ weiterlesen

Im Gegensatz zu anderen Cyberangriffen bieten Attacken mit Ransomware auf den ersten Blick einen einfachen Ausweg: die Zahlung des geforderten Lösegelds.‣ weiterlesen

Nach 84,5 Punkten im Oktober kletterte der Ifo-Geschäftsklimaindex im November auf 86,3 Punkte. Die Unternehmen blicken demnach weniger pessimistisch auf die nächsten Monate.‣ weiterlesen

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.‣ weiterlesen

Edge Management, Digital Twin und Data Spaces bilden die Schwerpunkte einer Zusammenarbeit zwischen der Open Industry 4.0 Alliance und dem Labs Network Industrie 4.0.‣ weiterlesen