Anzeige
Anzeige
Anzeige
Beitrag drucken

Plattform zur Innovationsentwicklung

Wozu nutzen IoT und Co.?

Das Internet of Things, Machine Learning und die Blockchain bieten für Unternehmen großes Potenzial, häufig fehlt aber ein Ansatzpunkt für die Umsetzung. Mit SAP Leonardo können Ansätze erkannt und Potenziale ausgeschöpft werden.

(Bild: ©ING_33594_238649/ingimage.com)

(Bild: ©ING_33594_238649/ingimage.com)

Produktionshallen sind gefüllt mit einer Vielzahl von komplexen, teils älteren, teils hochmodernen Maschinen, die für die Produktion von Waren benötigt werden. Kommt es zu ungeplanten Ausfallzeiten, hat das nicht nur negative Auswirkungen auf das eigene Unternehmen, sondern auch auf viele weitere Akteure der Supply Chain. Es gilt daher, Maschinenausfälle zu vermeiden.

Oftmals erfolgt eine Maschinenwartung erst dann, wenn ein Schadensfall eintritt oder aber vorbeugend in definierten Zeit- oder Laufleistungsintervallen. Dabei ein sinnvolles Wartungsintervall zu finden, gestaltet sich oft als schwierig: Wird es zu klein gewählt, steigen die Wartungskosten auf ein unwirtschaftliches Niveau. Bei einem zu groß gewählten Intervall kann dagegen ein plötzlicher Maschinenausfall vor dem nächsten Wartungstermin eintreten.

Abhilfe kann Predictive Maintenance schaffen. Dabei werden Daten von Sensoren und aus unterschiedlichen IT-Systemen gesammelt und ausgewertet, um den möglichen Ausfall einer Maschine zu erkennen, bevor es zum Stillstand kommt. Die erfassten Daten fließen dann in eine Datenbank, die für Big-Data-Analysen ausgelegt ist. Oft wird dabei auf die In Memory-Datenbank SAP Hana zurückgegriffen. In ihr werden neben den Maschinen- und Sensordaten auch betriebswirtschaftliche und technische Informationen aus ERP- und MES-Systemen gespeichert. Treten Veränderungen auf, die auf einen baldigen Maschinenstillstand hindeuten, schlägt das System Alarm.

Beim Machine Learning wird ein System so trainiert, dass es eigenständig komplexe Muster und Gesetzmäßigkeiten in großen Datenpools erkennen kann. Zusätzlich kann das System Vorhersagen auf Basis bereits bekannter Daten treffen und Wahrscheinlichkeiten für das Eintreten unterschiedlichster Ereignisse errechnen. So kann der bestmögliche Zeitpunkt für eine Wartung ermittelt werden. Oftmals können die entsprechenden Arbeiten sogar im laufenden Maschinenbetrieb erfolgen, sodass keine geplante Downtime nötig ist.

Qualitätsprobleme erkennen

Qualitätsmängel werden oft erst dann bemerkt, wenn sie bereits aufgetreten sind. Oftmals folgen daraufhin Rückrufaktionen, die finanzielle Verluste sowie Imageschäden nach sich ziehen können. Durch eine Vernetzung der gesamten Produktionsanlagen sowie der Werkstücke stehen eine Vielzahl von Datenströmen und Informationen zur Verfügung, die dabei helfen können, Qualitätsprobleme zu beheben, bevor sie auftreten. Machine-Learning-Algorithmen sind durch Auswertung von historischen und aktuellen Sensor- sowie Maschinendaten in der Lage, Anomalien in Werkstücken zu finden, die sonst möglicherweise unbemerkt bleiben würden. Das Wissen, das durch ständiges Monitoring aller Anlagen und Werkstücke generiert wird, ermöglicht also rechtzeitiges Eingreifen. Auch das Ersetzen von physischen Qualitätstests, durch Prognosen auf Basis von Big Data, soll in naher Zukunft möglich und profitabel sein.

Visualisierung in der Cloud

Für die Visualisierung der Datenauswertung stehen unterschiedliche Tools zur Verfügung. Dabei stehen auch cloudbasierte Lösungen, wie etwa die SAP Analytics Cloud, zur Verfügung. Neben der kürzeren Einführungsphase im Vergleich zu On Premise-Systemen, entfallen dabei keine Initialkosten für benötigte Hardware. Dazu können Administrationsaufwände auf ein Minimum reduziert werden. Je nach Anwendungsfall bietet die Analytics Cloud verschiedene Diagrammtypen. Zudem können Dashboards und Stories zusammengestellt werden, die dann in PowerPoint-Präsentationen oder Mitarbeiter-Newsletter eingebaut werden können. Die Lösung ermöglicht auch die Nutzung von Tablets und Smartphones.

Sowohl Anlagen als auch Werkstücke sind vernetzt und senden stetig Informationen zu ihrem aktuellen Status. Auf Basis dieser Daten können Maschinenausfälle und Qualitätsmängel vorhergesagt werden, bevor sie eintreten. (Bild: Abat AG)

Sowohl Anlagen als auch Werkstücke sind vernetzt und senden stetig Informationen zu ihrem aktuellen Status. Auf Basis dieser Daten können Maschinenausfälle und Qualitätsmängel vorhergesagt werden, bevor sie eintreten. (Bild: Abat AG)

Innovationen entwickeln

Viele Unternehmen sind sich dem Potenzial neuer Technologien bewusst. Oft fehlt jedoch die Vorstellungskraft, wie eine Idee zur Wirklichkeit werden kann. An dieser Stelle setzt das Leonardo-Portfolio von SAP an. Es bietet eine technische Grundlage für die Entwicklung neuer Lösungen, die auf Technologien wie Machine Learning, Internet of Things, Blockchain, Big Data, Analytics oder Data Intelligence basieren. Andererseits beinhaltet das System mit dem Design Thinking aber auch einen strukturierten Ansatz zur Entwicklung innovativer Ideen. Die dazugehörigen Workshops finden in einer lockeren Atmosphäre statt, was die Kreativität fördern soll. Zu den typischen Teilnehmern gehören neben Entscheidern und Mitarbeitern aus der IT-Abteilung auch spätere Endanwender. In jedem Workshop ist ein Design Thinking Coach anwesend, der als neutraler Moderator agiert und durch den Prozess der Ideenfindung leitet. Mit dieser Herangehensweise können je nach Umfang der gefundenen Idee bereits nach wenigen Monaten Prototypen vorgestellt und getestet werden. Diese werden anschließend natürlich nicht verworfen, sondern bis zur Produktreife weiterentwickelt.


Das könnte Sie auch interessieren:

ERP-Lösungen spielen eine zentrale Rolle in den Unternehmen und das tun sie gut. So die Erfahrungen von 2.089 Anwenderunternehmen aus dem deutschsprachigen Raum, die im Zuge der aktuellen Studie ‘ERP in der Praxis‘ durch die Analysten der Trovarit mittlerweile zum 10. Mal befragt wurden. Die Studie weist Zufriedenheitsbewertungen von mehr als 40 ERP-Lösungen aus.‣ weiterlesen

Insbesondere Unternehmen der Fahrzeugbau- und Elektroindustrie besitzen großes Potenzial zur Reduzierung des Energieverbrauchs in ihrer Produktion. Daher haben die Technische Hochschule Mittelhessen (THM) und Limtronik als Mitglieder des SEF Smart Electronic Factory e.V. einen Use-Case entwickelt, in dem Wartungsintervalle eines energieintensiven Reflow-Ofen sensorgestützt optimiert werden.‣ weiterlesen

Edge Computing ist für die industrielle IT grundsätzlich nichts Neues. Seit Jahrzehnten werden Geräte und Monitore in der Produktion weit entfernt von zentralen Rechenzentren betrieben. Das aktuelle Revival des Begriffes ist auch technologischen Innovationen geschuldet, die Latenzen auf wenige Millisekunden senken.‣ weiterlesen

Auch durch Bewegungen wie Fridays for Future und extreme Wetterphänomene befassen sich Unternehmen intensiver mit dem ökologischen Wandel. Doch während Energieeffizienzprojekte bereits häufig betrieben werden, stehen die Möglichkeiten zum Materialsparen eher selten im Fokus. Dieser Artikel liefert Impulse entlang der Wertschöpfungskette, Ressourcen erst gar nicht zu verbrauchen.‣ weiterlesen

Mit Microsoft Dynamics 365 Online und einer CRM-Branchenlösung von Orbis hat Triflex den Grundstein zur Harmonisierung der IT-Landschaft und für durchgängige Datenflüsse und Prozesse im Vertrieb und im Marketing gelegt. Datenverwaltung in der Cloud schafft jetzt die Transparenz für effizienteren Vertrieb und zum Heben neuen Absatzpotenzials.‣ weiterlesen

Wenn Unternehmen Digitalisierungsprojekte angehen, tun sie dies oft mit einem externen Partner. Die Frage ist nur mit Welchem? IFS hat in einer Studie ermittelt, welche Faktoren bei der Auswahl eine Rolle spielen.‣ weiterlesen

Am Karlsruher Institut für Technologie (KIT) wird im neuen Forschungsbereich 'Nachhaltige Produktion' erarbeitet, wie Unternehmen ihre meist noch linearen Fertigungsprozesse in Richtung einer Kreislaufwirtschaft entwickeln können. Erste Projekte laufen bereits.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige