Anzeige
Anzeige
Beitrag drucken

Modellentwicklung mit Sharing-Economy-Ansatz

Mit Federated Learning sensible Daten sicher teilen

Beim Federated Learning-Ansatz bezieht die künstliche Intelligenz ihre Informationen aus unterschiedlichen Modellen, um den Lerneffekt zu verstärken. Gerade seltene Vorfälle wie Maschinenstörungen lassen sich so besser verstehen. Der Kniff dabei ist, dass sensible Daten etwa zu Personen keine Systemgrenzen überschreiten.

Die Industrie 4.0 braucht sie wie der Mensch die Luft zum Atmen: Daten. Doch im Unterschied zum Menschen und seiner Atemluft, produziert die Industrie 4.0 ihre Daten selbst. Doch nicht immer sind die richtigen leicht zu finden und zu erschließen. (Bild: Eoda GmbH)

Die Industrie 4.0 braucht sie wie der Mensch die Luft zum Atmen: Daten. Doch im Unterschied zum Menschen und seiner Atemluft, produziert die Industrie 4.0 ihre Daten selbst. Doch nicht immer sind die richtigen leicht zu finden und zu erschließen. (Bild: Eoda GmbH)

Daten bilden die Basis für industrielle Digitalisierungsvorhaben. Obwohl Unternehmen diese Daten selbst produzieren, leiden viele von ihnen an ‚Datennot‘. Die Ursachen dafür sind vielfältig. Eine fehlende oder unzureichende technische Infrastruktur zur systematischen Datenerfassung ist in einigen Industrieunternehmen immer noch eine der größten Hürden. Aber auch in stärker digitalisierten Unternehmen, in denen z.B. die Sensorik an Maschinen und Anlagen täglich große Datenbestände produziert, ist die Datengrundlage oft ein Stolperstein. Dieser zeigt sich beispielsweise in Form von abgeschlossenen Datensilos, die nur einzelnen Abteilungen zur Verfügung stehen. Die Themen Datenhoheit und Datenschutz als regulatorische Basis der Datenverarbeitung, sind hier ein Bremsklotz für das schnelle und umfangreiche Training von Analysemodellen. Auch Konflikte über die Nutzung der Daten zwischen Maschinen- und Komponentenbauern und den jeweiligen Betreibern der Anlagen verringern das tatsächlich vorhandene Datenpotenzial.

Begrenzte Daten

Wenn es um den Einsatz von Data Science in der Industrie geht, landet man beinahe zwangsläufig bei der vorausschauenden Instandhaltung (Predictive Maintenance). Die Prognose von Maschinenstörungen und -ausfällen auf Basis der verfügbaren Sensordaten birgt im Erfolgsfall ein enormes wirtschaftliches Potenzial. Aus Data-Science-Gesichtspunkten sind Maschinenausfälle aber oftmals seltene Ereignisse mit heterogenem Ursprung und die vorhandenen historischen Daten von Störungsfällen sehr begrenzt. Haben die relevanten Daten einen Personenbezug – z.B. zum jeweiligen Maschinenführer – erschwert dies die Nutzung zusätzlich. Die Qualität der für Predictive Maintenance eingesetzten Machine-Learning-Modelle ist aber untrennbar mit der verfügbaren Menge an relevanten Trainingsdaten verbunden. Ist sie unzureichend, kann die Vision der vorausschauenden Instandhaltung unerreichbar bleiben. Dieser Anwendungsfall ist ein prägnantes Beispiel für die Datenhoheit als Herausforderung. Die zentralen Fragen lauten: Wer hat die Hoheit über die Daten und wie können Wege gefunden werden, sodass Maschinenbauer und -betreiber wirklich von den Daten profitieren können?

Federated Learning

Eine mögliche Antwort auf diese Frage ist Federated Learning. Methodisch handelt es sich bei Federated Learning um eine spezielle Technik des maschinellen Lernens. Im Kern geht es um einen Sharing-Economy-Ansatz, der hilft, die Güte von Machine-Learning-Modellen zu verbessern und gleichzeitig Datenschutzbestimmungen einzuhalten. Dabei wird aus einer Vielzahl einzelner Analysemodelle unterschiedlicher Akteure ein zentrales Modell gebildet. Die Lerneffekte dieses Modells fließen schließlich iterativ zurück in die einzelnen Modelle der unterschiedlichen Akteure und verbessern diese dadurch. Durch diesen dezentralen Ansatz steht eine deutlich umfangreichere Datenbasis für das Training der Modelle zur Verfügung, ohne dass diese Daten dafür den Besitzer wechseln müssen – die Herausgabe sensibler Informationen entfällt. Das zentrale Analysemodell erhält nur die Lernergebnisse, also die anonymisierten Parameter der einzelnen Modelle.

Verstärkter Lerneffekt

Durch die Einbeziehung der Informationen aus dem Training einer Vielzahl unterschiedlicher Modelle, wird der entstehende Lerneffekt massiv verstärkt. Verschiedene Analysemodelle können dabei parallel zueinander trainiert werden. Im Vergleich zu einem einzigen Modell und einer begrenzten Datenbasis können Analysemodelle mit Federated Learning deutlich schneller eine höhere Genauigkeit erreichen. Predictive Maintenance ist dabei nur ein mögliches Analyseszenario, für die Verbindung der Analysemodelle unterschiedlicher Maschinenbauer und -betreiber und damit indirekt auch unterschiedlicher Datentöpfe. Durch diese Verbindung kann das Volumen an Trainingsdaten deutlich erweitert und Wissensvorsprünge generiert werden.

Die Datennot lindern

Federated Learning hat das Potenzial, die Time-to-Market sowie die Entwicklungskosten von datengetriebenen Lösungen zu reduzieren. Für Unternehmen mit begrenzter Datenbasis kann der Ansatz zudem ein Türöffner sein. Damit dies gelingen kann, braucht es neben der Infrastruktur auch die Bereitschaft von Industrieunternehmen zur Kooperation. Denn neben Herausforderungen wie der Lastenverteilung und der Modellsicherheit, ist Federated Learning vor allem eine Frage der Geisteshaltung. Umfragen unter Industrievertretern zeigen, dass Technologien wie KI in den Unternehmen angekommen sind. Jedoch hat die digitale Transformation in diesem Bereich in vielen Unternehmen erst begonnen. Alleingänge können dabei schnell an ihre Grenzen stoßen, weshalb eine Investition in eine entsprechende Federated-Learning-Infrastruktur und die Zusammenarbeit mit Lieferanten, und sogar Wettbewerbern attraktiver werden kann, um die Datennot zu lindern.

Beitrag drucken

Modellentwicklung mit Sharing-Economy-Ansatz

Mit Federated Learning
sensible Daten sicher teilen

Beim Federated Learning-Ansatz bezieht die künstliche Intelligenz ihre Informationen aus unterschiedlichen Modellen, um den Lerneffekt zu verstärken. Gerade seltene Vorfälle wie Maschinenstörungen lassen sich so besser verstehen. Der Kniff dabei ist, dass sensible Daten etwa zu Personen keine Systemgrenzen überschreiten. (mehr …)


Das könnte Sie auch interessieren:

Die Konsolidierung großer Datenmengen, um damit KI-Anwendungen für Produktionsprozesse zu entwickeln, fällt vielen Unternehmen noch schwer. Im Projekt ExDRa sollen Lösungen entstehen, die diesen Prozess spürbar vereinfachen. Dieser Text ist der Auftakt zu einer Artikelreihe zu den produktionsbezogenen Initiativen des vom BMWi geförderten Technologieprogramms Smarte Datenwirtschaft.‣ weiterlesen

Rockwell Automation hat einen neuen CTO. Zum 1 Juli hat Cyril Perducat das Amt des Chief Technology Officers übernommen.‣ weiterlesen

Um schon vor der Lieferung einer Werkzeugmaschine Einblicke in ihre Leistungsfähigkeit zu ermöglichen, arbeitet die Schweizer Starrag-Gruppe mit der NC-Simulationslösung Vericut. Anhand der ermittelten Daten lassen sich die für später angedachten NC-Programme feinjustieren, noch bevor die Maschine ihr Werk verlässt.‣ weiterlesen

Viele Firmen befassen sich gerade mit der Neuausrichtung Ihrer Lieferketten. Dabei bietet das europäische Estland auf einer Fläche so groß wie Niedersachsen beispielhafte Digitalisierungs- und Fertigungsexpertise. Zusammen mit dem vergleichsweise einfachen Marktzugang, der räumlichen Nähe und dem Rahmen der EU-Gesetzgebung dürfte das kleine Land ein zunehmend wichtiger Partner der hiesigen Industrie bei ihrer digitalen Transformation werden.‣ weiterlesen

Änderungen in Personalzeitwirtschaft und Entgeltabrechnung gehören im HR-Management zu den oft ungeliebten, aber dennoch regelmäßig anstehenden Aufgaben. Jede Änderung in den Betriebsvereinbarungen, Gesetzesnovellen oder tarifliche Neuregelungen verlangen die Überarbeitung von Schemen und Regeln in den Personalabteilungen. Und auch Adhoc-Änderungen müssen unmittelbar umgesetzt werden.‣ weiterlesen

ERP-Branchenlösungen sollen Standardgeschäftsprozesse und Spezialfunktionen unter einen Hut bringen. Innovachem für mittelständische Chemieunternehmen verbindet den Systemkern aus Basis von SAP S4/Hana etwa mit Modulen zur Rezepturentwicklung und Compliance-Prüfung. Das erspart so manche Programmierarbeit und Schnittstellenpflege.‣ weiterlesen

Aras Software hat einen neuen Geschäftsführer. Peter Schoppe hat mit Wirkung zum 1. Juli die Leitung des Plattformanbieters übernommen.‣ weiterlesen

Er ist schnell, leicht und verbraucht wenig Treibstoff: Der Hochgeschwindigkeits-Helikopter Racer kann Fluggeschwindigkeiten von bis zu 400km/h erreichen. Die Schalenbauteile seiner Außenhaut werden mit einem neuartigen Fertigungsverfahren hochautomatisiert hergestellt. Ein Forscherteam des Fraunhofer IGCV hat die Methode gemeinsam mit Airbus Helicopters entwickelt.‣ weiterlesen

Dualis hat den neuen Hauptsitz des Unternehmens in Dresden bezogen. Der reguläre Arbeitsbetrieb begann am 19. Juli.‣ weiterlesen

Kawasaki Gas Turbine Europe plant, produziert, installiert und wartet Gasturbinen. In Bad Homburg befindet sich das europäische Zentrallager des Tochterunternehmens von Kawasaki Heavy Industries. Um dort fehleranfällige Prozesse abzulösen, hat das Unternehmen eine Lagerwirtschaftslösung eingeführt, die alle Transportbewegungen dokumentiert.‣ weiterlesen

Störungen in der Lieferkette können schnell zu Problemen führen. Jaggaer hat vier Tipps zusammengestellt, wie Unternehmen Schwachstellen in der eigenen Lieferkette identifizieren können.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige