Anzeige
Anzeige
Anzeige
Beitrag drucken

Quantensprung für das Condition Monitoring

Maschinenlernen eingebettet

Bisher wird der gewünschte Zusammenhang zwischen den jeweiligen Eingangs- und Ausgangsdaten einer Automatisierungsbaugruppe mittels wissensbasierter Regeln in einer Hoch- oder SPS-Programmiersprache kodiert und auf einem eingebetteten System ausgeführt. In Zukunft lassen sich Embedded-Systeme in der Automatisierung auch per Supervised Machine Learning für eine bestimmte Aufgaben trainieren.

Zur Zustandsüberwachung (Condition Monitoring) eines elektrischen Antriebs mit Hilfe von Schwingungsdaten existieren unzählige konventionelle Lösungen. Einige nutzen PC-basierte Diagnosesoftware oder cloudbasierte Services. Andere basieren auf einfachen Handmessgeräten. (Bild: SSV SoftwareSystems GmbH)

Zur Zustandsüberwachung (Condition Monitoring) eines elektrischen Antriebs mit Hilfe von Schwingungsdaten existieren unzählige konventionelle Lösungen. Einige nutzen PC-basierte Diagnosesoftware oder cloudbasierte Services. Andere basieren auf einfachen Handmessgeräten. (Bild: SSV SoftwareSystems GmbH)

In unzähligen eingebetteten Systemen diverser Automatisierungskomponenten wird eine in speziellen Hochsprachen erstellte Firmware genutzt, die den jeweils gewünschten Zusammenhang zwischen Ein- und Ausgangssignalen anhand von statischen Regeln herstellt, die auf lexikalisches Wissen basieren. Ein typischer Anwendungsfall aus dem Predictive-Maintenance-Umfeld wäre beispielsweise eine komplexe Sensorikapplikation zur Zustandsüberwachung eines elektrischen Antriebs mit Hilfe von triaxialen Beschleunigungs- und Winkelgeschwindigkeitssensoren: Die Mikrorechner-Firmware im Sensorsystem verarbeitet die analogen Rohdaten der einzelnen Sensorelemente und liefert anhand eines programmierten Regel-basierten Messverfahrens (welche Frequenzen und Amplituden sind jeweils zulässig?) das gewünschte digitale Ausgangssignal. Klassische Firmware-Entwicklungen für komplexe eingebettete Systeme sind aufwändig und über die gesamte Produktlebensdauer betrachtet, relativ unflexibel. Jede noch so kleine Änderung der Anforderungen löst einen neuen Entwicklungszyklus aus. Durch die zahlreichen Weiterentwicklungen im Bereich der künstlichen Intelligenz (KI) ist nun ein weiterer Lösungsansatz möglich: Zwischen die Ein- und Ausgangsdaten eines Mikrorechners wird ein lernfähiger Machine-Learning-Algorithmus geschaltet und mittels spezieller Trainingsdaten für eine bestimmte Aufgabenstellung konfiguriert. Dabei entsteht ein mathematisches Modell, das den jeweiligen Zusammenhang der Ein- und Ausgänge abbildet. Anforderungsänderungen werden durch eine erneute Trainingsphase und mit Hilfe zusätzlicher Referenzdaten umgesetzt. Grundsätzlich lässt sich mit dieser Vorgehensweise jedes Problem lösen, dessen Zusammenhang zwischen Ein- und Ausgängen durch ein mathematisches Modell beschreibbar ist.
Durch einen ‘Trainieren statt programmieren’-Lösungsansatz lassen sich etwa universell nutzbare Machine-Learning-basierte Sensorkonzepte für das Condition Monitoring von Maschinen realisieren. Ob nun das Antriebselement einer Pumpe, eines Transportbandes oder einer Belüftungsanlage überwacht werden muss, spielt für die Embedded-Firmware praktisch keine Rolle. (Bild: SSV Software Systems GmbH)
Durch einen ‘Trainieren statt programmieren’-Lösungsansatz lassen sich etwa universell nutzbare Machine-Learning-basierte Sensorkonzepte für das Condition Monitoring von Maschinen realisieren. Ob nun das Antriebselement einer Pumpe, eines Transportbandes oder einer Belüftungsanlage überwacht werden muss, spielt für die Embedded-Firmware praktisch keine Rolle. (Bild: SSV Software Systems GmbH)


Das könnte Sie auch interessieren:

Der Anbieter von Wearables und AR-Lösungen Ubimax hat ein Release der AR-Softwareplattform Frontline angekündigt. Das kürzlich von Teamviewer übernommene Unternehmen hat in Frontline 3.0 eine Zwei-Faktor-Authentifizierung (2FA) sowie ein erweitertes Identitäts- und Zugriffsmanagement einschließlich Single-Sign-On (SSO) über das grundlegende Nutzerverwaltungssystem des Kunden eingeführt.‣ weiterlesen

Viele Anwendungen aus dem Industrie-4.0-Spektrum basieren auf der Verfügbarkeit von Produktdaten. Um diese strukturiert bereitzustellen, helfen Werkzeuge zur Datenklassifizierung wie die neue NovaDB im Zusammenspiel. Zusammen mit Anwendungspaketen können etwa elektronische Produktkataloge erstellt und gepflegt werden.‣ weiterlesen

Die MTU Maintenance Berlin-Brandenburg GmbH setzt zur Auswertung von Produktionsdaten selbstentwickelte Analysetools ein. Weil diese nicht den vollen Funktionsumfang moderner BI-Lösungen bieten, wurden in einem multiperspektiven Auswahlverfahren geeignete Softwareprodukte identifiziert. Dieses sollte sicherstellen, dass die gewählten Programme die Analyse- und Reportingprozesse bestmöglich unterstützen und im Unternehmen gut angenommen werden.‣ weiterlesen

KI-basierte Systeme und Maschinen werden immer autonomer, selbstständiger und intelligenter. Ob und wie ist es zu schaffen, dass sie auf Dauer menschlichen Werten und Regeln folgen? Dr. Kurt D. Bettenhausen, Vorsitzender des interdisziplinären Gremiums Digitale Transformation im VDI und Vorstandsmitglied der VDI/VDE-GMA, spricht im zehnten Teil unserer Serie Autonome Systeme mit dem VDI.‣ weiterlesen

Nachdem die PSI Software AG bereits bekanntgegeben hatte, das Finanzvorstand Harald Fuchs das Unternehmen im nächsten Jahr verlässt, steht nun fest, dass Gunnar Glöckner den Posten ab Juli 2021 übernehmen wird.‣ weiterlesen

Zurzeit liegt weder ein fest umrissenes Berufsbild noch klar formulierte Anforderungen an Projektingenieure vor, die in internationalen Projekten eingebunden sind.‣ weiterlesen

Der Getriebehersteller Neugart hat 18 Baureihen für Planetengetriebe mit vier Millionen möglichen Varianten im Programm. Trotz der Vielfalt kann der Hersteller seine Produkte innerhalb von 24 Stunden ausliefern. Denn Neugart hat den Aufwand für Konstruktion und Datenverwaltung durch ein regelbasiertes Variantenmanagement komplett automatisiert.‣ weiterlesen

Zum 1. November hat Dr. Clemens Weis die operative Geschäftsführung von Cideon übernommen. Er folgt auf Clemens Voegele, der den Posten des Chief Digital Officers der Friedhelm Loh Group übernommen hat. Als Vorsitzender der Geschäftsführung bleibt er jedoch Teil von Cideon.‣ weiterlesen

Gemeinsam wollen MHP und IFS verbesserte Lösungen für ein durchgängiges Service Lifecycle Management anbieten.‣ weiterlesen

25 Prozent der Unternehmen in Deutschland rechnen damit, dass in den kommenden fünf Jahren mehr Produktionsprozesse ausgelagert werden. Damit beschäftigen sich vor allem kleinere Unternehmen (bis 50Mio.€ Jahresumsatz). Etwa jede zweite Firma erhofft sich dadurch mehr Flexibilität.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige