Anzeige
Anzeige
Beitrag drucken

Quantensprung für das Condition Monitoring

Maschinenlernen eingebettet

Bisher wird der gewünschte Zusammenhang zwischen den jeweiligen Eingangs- und Ausgangsdaten einer Automatisierungsbaugruppe mittels wissensbasierter Regeln in einer Hoch- oder SPS-Programmiersprache kodiert und auf einem eingebetteten System ausgeführt. In Zukunft lassen sich Embedded-Systeme in der Automatisierung auch per Supervised Machine Learning für eine bestimmte Aufgaben trainieren.

Zur Zustandsüberwachung (Condition Monitoring) eines elektrischen Antriebs mit Hilfe von Schwingungsdaten existieren unzählige konventionelle Lösungen. Einige nutzen PC-basierte Diagnosesoftware oder cloudbasierte Services. Andere basieren auf einfachen Handmessgeräten. (Bild: SSV SoftwareSystems GmbH)

Zur Zustandsüberwachung (Condition Monitoring) eines elektrischen Antriebs mit Hilfe von Schwingungsdaten existieren unzählige konventionelle Lösungen. Einige nutzen PC-basierte Diagnosesoftware oder cloudbasierte Services. Andere basieren auf einfachen Handmessgeräten. (Bild: SSV SoftwareSystems GmbH)

In unzähligen eingebetteten Systemen diverser Automatisierungskomponenten wird eine in speziellen Hochsprachen erstellte Firmware genutzt, die den jeweils gewünschten Zusammenhang zwischen Ein- und Ausgangssignalen anhand von statischen Regeln herstellt, die auf lexikalisches Wissen basieren. Ein typischer Anwendungsfall aus dem Predictive-Maintenance-Umfeld wäre beispielsweise eine komplexe Sensorikapplikation zur Zustandsüberwachung eines elektrischen Antriebs mit Hilfe von triaxialen Beschleunigungs- und Winkelgeschwindigkeitssensoren: Die Mikrorechner-Firmware im Sensorsystem verarbeitet die analogen Rohdaten der einzelnen Sensorelemente und liefert anhand eines programmierten Regel-basierten Messverfahrens (welche Frequenzen und Amplituden sind jeweils zulässig?) das gewünschte digitale Ausgangssignal. Klassische Firmware-Entwicklungen für komplexe eingebettete Systeme sind aufwändig und über die gesamte Produktlebensdauer betrachtet, relativ unflexibel. Jede noch so kleine Änderung der Anforderungen löst einen neuen Entwicklungszyklus aus. Durch die zahlreichen Weiterentwicklungen im Bereich der künstlichen Intelligenz (KI) ist nun ein weiterer Lösungsansatz möglich: Zwischen die Ein- und Ausgangsdaten eines Mikrorechners wird ein lernfähiger Machine-Learning-Algorithmus geschaltet und mittels spezieller Trainingsdaten für eine bestimmte Aufgabenstellung konfiguriert. Dabei entsteht ein mathematisches Modell, das den jeweiligen Zusammenhang der Ein- und Ausgänge abbildet. Anforderungsänderungen werden durch eine erneute Trainingsphase und mit Hilfe zusätzlicher Referenzdaten umgesetzt. Grundsätzlich lässt sich mit dieser Vorgehensweise jedes Problem lösen, dessen Zusammenhang zwischen Ein- und Ausgängen durch ein mathematisches Modell beschreibbar ist.
Durch einen ‘Trainieren statt programmieren’-Lösungsansatz lassen sich etwa universell nutzbare Machine-Learning-basierte Sensorkonzepte für das Condition Monitoring von Maschinen realisieren. Ob nun das Antriebselement einer Pumpe, eines Transportbandes oder einer Belüftungsanlage überwacht werden muss, spielt für die Embedded-Firmware praktisch keine Rolle. (Bild: SSV Software Systems GmbH)
Durch einen ‘Trainieren statt programmieren’-Lösungsansatz lassen sich etwa universell nutzbare Machine-Learning-basierte Sensorkonzepte für das Condition Monitoring von Maschinen realisieren. Ob nun das Antriebselement einer Pumpe, eines Transportbandes oder einer Belüftungsanlage überwacht werden muss, spielt für die Embedded-Firmware praktisch keine Rolle. (Bild: SSV Software Systems GmbH)


Das könnte Sie auch interessieren:

Zerspaner müssen sich intensiv mit hoher Variantenvielfalt, kleinen Losgrößen und langen Rüstzeiten befassen, um wettbewerbsfähig zu fertigen. MES-Software mit Advanced Planning and Scheduling-Funktionalität hilft, die Herausforderungen der Branche anzugehen.‣ weiterlesen

Weltweit steckt der Einsatz von künstlicher Intelligenz (KI) noch in den Kinderschuhen. Die Mehrheit der Unternehmen, die KI einsetzen, experimentieren laut einer Accenture-Untersuchung in diesem Bereich noch. 12 Prozent nutzen die Technologie mit einem KI-Reifegrad, der einen starken Wettbewerbsvorteil bringt, so das Ergebnis der Studie.‣ weiterlesen

Thomas Herrguth verantwortet seit 1. Juli das Deutschlandgeschäft bei VMware. Sein Vorgänger Armin Müller konzentriert sich nun auf seine Rolle als Vice President CEMEA bei VMware.‣ weiterlesen

Bei Predictive-Quality-Anwendungen kann es sich auszahlen, nicht auf die Cloud, sondern auf Edge Computing zu setzen – vor allem dann, wenn es schnell gehen muss, erläutert Data-Science-Spezialist LeanBI.‣ weiterlesen

Der ERP-Auswahlberater Trovarit begleitete Buhmann Systeme bei seiner Software-Neuausrichtung von der Prozessanalyse bis zur Systemauswahl. Ein zentrales Element war der Anforderungskatalog mit 850 Punkten. Im Marktvergleich bot die Software AMS.ERP die höchste Abdeckung - und ihr Hersteller erhielt den Zuschlag.‣ weiterlesen

Gemeinsam wollen Siemens und Nvidia das industrielle Metaverse erschließen. Die Unternehmen wollen dafür ihre Partnerschaft ausbauen und durch die Verknüpfung von Nvidia Omniverse und Siemens Xcelerator realitätsgetreue digitale Zwillinge ermöglichen.‣ weiterlesen

Amazon Web Services hat auf dem AWS Summit in San Francisco drei Services angekündigt, die sich vor allem an produzierende Betriebe richten. Mit AWS IoT TwinMaker können Entwickler digitale Zwillinge etwa von Gebäuden, Fabriken, Industrieanlagen und Produktionslinien erstellen.‣ weiterlesen

Wachstum hatte die Personalarbeit bei Schuler Präzisionstechnik vor Herausforderungen gestellt. Die manuelle Bearbeitung von Vorgängen kostete Zeit und war umständlich. Daher wurde ein digitales Personalmanagement-System auf Basis einer Software für Enterprise Content Management (ECM) aus der Taufe gehoben.‣ weiterlesen

Die Berliner Fraunhofer Institute haben im Auftrag von German Edge Cloud und dem Innovationscluster 5G Berlin eine 5G-Infrastruktur in Betrieb genommen. Diese steht Kunden und Partnern aus Industrie und Forschung für Projekte zur Verfügung.‣ weiterlesen

PTC hat das neunte Major Release der CAD-Software Creo vorgestellt. Das Unternehmen mit Hauptsitz in Boston hat in die Weiterentwicklung der Modellierungsumgebung investiert, um die Benutzerfreundlichkeit und Produktivität zu erhöhen.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige