Anzeige
Anzeige
Beitrag drucken

Condition Monitoring verteilter Anlagen

IoT-Monitoring per LPWA-Funkverbindung

Industrielle Geräte erzeugen beim Echtzeit-Condition-Monitoring größere Datenmengen, die permanent zu analysieren sind. Ein Sensorrohdaten-Stream in die Cloud ist meist unpraktikabel, zumal dort nur die Analyseergebnisse benötigt werden. Passende Sensorkonzepte können Daten so vorverabeiten, dass sich die verdichteten Informationen schließlich sogar per Low Power Wide Area (LPWA)-Funkverbindungen über größere Entfernungen übertragen lassen.

 (Bild: SSV Software Systems GmbH)

(Bild: SSV Software Systems GmbH)

Begleitend zum rasanten Wachstum an installierten IoT-Geräten haben sich verschiedene Funktechnologien für die Sensordatenübertragung in industriellen IoT-Projekten etabliert. Einige nutzen lizenzpflichtige Frequenzen, wie LTE-m oder NB-IoT. Andere teilen sich die lizenzfreien Bänder im Bereich von 868MHz, 2.4 oder 5GHz. Dazu gehören LoRa, Mioty und WLAN. Die Auswahl der Funktechnologie für eine IoT-Sensorapplikation ist anspruchsvoll und sollte unter Einbeziehung von Experten bearbeitet werden. LoRa und Mioty etwa sind eine gute LPWA-Wahl, wenn pro Tag kleine Datenmengen über größere Entfernungen übertragen werden und sich Firmen um die Netzwerkinfrastruktur weitgehend selbst kümmern. Sollen IoT-Sensoren relativ standortunabhängig in verschiedenen Ländern Daten erfassen, ohne Infrastrukturaufwand zu verursachen und sollen dabei keine monatlichen SIM-Kartengebühren anfallen, kommt NB-IoT als LPWA-Standard in Frage. Auf Grund der geringen Bandbreite werden sowohl für LoRa und Mioty als auch NB-IoT sinnvollerweise Sensoren mit eingebetteten KI-Algorithmen benötigt.

Kategoriale Sensordaten

Die meisten Sensoren erfassen typischerweise eine bestimmte physikalische Messgröße und liefern etwa am Ausgang eine Spannung oder einen Widerstands- bzw. Kapazitätswert, der dem zeitlichen Verlauf der Eingangsmessgröße folgt. Abhängig vom Wirkprinzip des Sensorelements und dem jeweiligen Messverfahren fallen dabei innerhalb einer bestimmten Zeitspanne relativ große Datenmengen an. Bei einem MEMS-Beschleunigungssensor, der die auf eine Testmasse wirkende Trägheitskraft über kapazitive Veränderungen bestimmt, können das je nach Bandbreite und Anzahl der Beschleunigungsachsen schon mehrere tausend Bytes pro Sekunde sein. Selbst bei einem einfachen Infrarot-Sensor-Array mit 8×8 Pixeln zur Temperaturmessung von Flächen und anderen Objekten entstehen über eine bestimmte Entfernung bei einer Auffrischrate von 1Hz immer noch 128 Bytes je Sekunde. Im industriellen IoT, also in der Welt der Maschinen und Anlagen, gibt es unzählige Anwendungen, in denen ein Sensordatenstrom zur Informationsgewinnung über Datenanalysen in einen kategorialen Ausgangswert umgewandelt wird. Ein typisches Beispiel wäre das Condition Monitoring. Dazu gehört sehr häufig die Fragestellung, in welchem Zustand die Maschine jeweils ist (Maschine ist im Standby-Zustand, Maschine ist aktiv und produziert oder die Maschine befindet sich in einer Rüstphase). Ein weiteres Beispiel wäre der Verschleißzustand der Schleifringkomponenten einer Antriebsbaugruppe mit Hilfe von Thermografiebildern. Hier sind lediglich zwei Zustände relevant: OK oder kritisch.

Embedded Data Analytics

Die erforderlichen Sensordatenanalysen für eine möglichst genaue Zustandsklassifizierung sind beim derzeitigen Stand der Technik auch direkt in einem Sensor durchführbar. Die dafür relevanten Funktionsbausteine lassen sich unter dem Oberbegriff TinyML zusammenfassen. Hinter diesem relativ neuen Begriff verbirgt sich eine Sammlung von Methoden und Konzepten für Machine Learning (ML)-Anwendungen mit eingebetteten Mikrorechnersystemen (Embedded Systems). Zu TinyML gehören sowohl Algorithmen und andere Softwarefunktionen als auch Hardwareaspekte. TinyML nutzt gegenwärtig in erster Linie das Supervised Machine Learning. Dieses ML-Verfahren besteht aus den Schritten Modellbildung und Modellnutzung. Im ersten Schritt wird anhand speziell erfasster Daten ein ML-Modell erzeugt und in einer Datei gespeichert. Dabei kommen künstliche neuronale Netzwerke (KNN) zum Einsatz, deren Gewichtungsparameter die Zusammenhänge der erfassten Daten ‘erlernen’. Dieser Vorgang ist insgesamt sehr rechenintensiv und sollte daher in der Cloud oder auf entsprechend leistungsfähigen Servern erfolgen. Mit dem jeweils erzeugten Modell lässt sich praktisch jede mathematische Regressions- oder Klassifizierungsaufgabe lösen. Entscheidend ist allerdings die Qualität der erfassten Daten, aus denen das KKN die Zusammenhänge erlernt. Via TinyML-Methoden ist aus der Modelldatei ein Embedded-Code zur Modellnutzung erstellbar, die sich direkt in einem Sensor ausführen lässt. Damit lassen sich bisher unbekannte (Sensor-) Eingangsdaten periodisch analysieren. Das Ergebnis ist jeweils ein Regressand (also eine von den Eingangsdaten abhängige Ausgangsvariable) oder eine Klasse. Dieser ML-Modell-basierte Analysevorgang wird auch als Inferenzphase bezeichnet.

ML-Modell erforderlich

Die Schlüsselkomponenten zur Reduzierung des Sensorrohdatenvolumens und zur LPWA-Nutzung sind das Machine-Learning-Modell und eine Inferenzfunktion. Dafür werden auf jeden Fall qualifizierte Daten benötigt, in denen ein Lernalgorithmus die gewünschten Zusammenhänge vorfindet. Sowohl für den Lernvorgang als auch für die spätere Inferenzphase sind einige Parameter zu spezifizieren, die das KNN selbst und die Optimierungsmethodik des Lernvorgangs usw. beschreiben. Das nach dem Lernvorgang vorliegende Modell ist bezüglich der Genauigkeit zu prüfen (davon hängt die Fehlerquote der Inferenz ab). Gegebenenfalls ist die Modellbildung mit veränderten ­Parametern zu wiederholen. Bei einer zufriedenstellenden Genauigkeit wird das Modell in ein TinyML-Format ­umgewandelt und in die Sensorsoftware integriert. Um dem interessierten Leser die dafür erforderliche Vor­gehensweise beispielhaft aufzuzeigen, wurden unter ­https://github.com/SSV-embedded/TinyML_IR-Sensor IR-Wärmebilder als Beispieldaten plus erforderlichem ­Python-Code für ein geeignetes ML-Modell inklusive einer Beschreibung veröffentlicht, welches sich mit der Open-Source-Bibliothek TensorFlow erstellen lässt.

Durch TinyML sind LPWA-Sensoren realisierbar, die Eingangsmessgrößen mit Machine Learning (ML)-Modellen direkt im Sensor analysieren und am Ausgang zum Beispiel eine kategoriale Variable liefern. (Bild: SSV Software Systems GmbH)

Durch TinyML sind LPWA-Sensoren realisierbar, die Eingangsmessgrößen mit Machine Learning (ML)-Modellen direkt im Sensor analysieren und am Ausgang zum Beispiel eine kategoriale Variable liefern. (Bild: SSV Software Systems GmbH)

 


Das könnte Sie auch interessieren:

Telefónica Tech erwirbt BE-terna und will damit seine Position als Technologie-Dienstleister stärken.‣ weiterlesen

Tim van Wasen tritt die Nachfolge von Stéphane Paté an und wird Geschäftsführer von Dell Technologies Deutschland.‣ weiterlesen

Überwachungssysteme, die vor Einbrüchen schützen sollen und sich per Smartphone-App steuern lassen, sollen die Nutzer in Sicherheit wiegen. Dass dieses Gefühl trügen kann, haben Studierende aus dem Studiengang Informatik an der Hochschule Emden/Leer im Rahmen eines Forschungsprojektes aufgedeckt.‣ weiterlesen

Das IT-Unternehmen Checkmarx hat das Tool Supply Chain Security vorgestellt. Das Programm zielt aber nicht auf die physische Lieferkette eines Produktionsunternehmens ab, sondern überwacht im Zusammenspiel mit Checkmarx Software Composition Analysis (SCA) den Health- und Security-Status von Open-Source-Projekten mit Blick auf mögliche Anomalien.‣ weiterlesen

Unternehmen haben bezüglich der Digitalisierung ihrer Qualitätsprozesse heute mehr Möglichkeiten denn je. Beim Blick auf klassische Produktionsunternehmen und deren Systemlandschaften kommen ERP- und CRM-Systeme, MES-Software und CAQ-Lösungen zum Vorschein, die durch offene Schnittstellenkonzepte wie OpenAPI in Summe wesentlich mehr Integrationsmöglichkeiten als früher mitbringen.‣ weiterlesen

Mit der weltgrößten Spaltrohrmotorpumpe mit Explosionsschutz konnte Hermetic-Pumpen für Aufsehen sorgen. Um bei der Entwicklung und Fertigung der Spezialpumpen erforderliche Normen und Vorgaben möglichst effizient umzusetzen, setzt der Hersteller aus Gundelfingen auf ein Integriertes Managementsystem.‣ weiterlesen

Mit einem Manufacturing Execution System (MES) können mittelständische Fertigungsbetriebe ihre Produktion digitalisieren und sie so auf komplexere Marktanforderungen ausrichten. Auf welche Funktionalitäten Fertiger achten sollten, zeigt der folgende Beitrag.‣ weiterlesen

Das Maschinenbauunternehmen Schenck Process hat die serverlose, modulare IoT-Plattform Coniq Cloud auf den Markt gebracht. Das System ist als IoT-Backbone für die eigenen Maschinen gedacht und bietet Anwendungsprogramme etwa zu Optimierung von Produktionszeiten und für Datenauswertungen.‣ weiterlesen

Komplexe Fertigung in Kombination mit hohem Termindruck führten beim Maschinenbauer Knoll dazu, dass lediglich 53 Prozent der Liefertermine zu halten waren. Nach der Einführung der PPS-Lösung von LF Consult liegt die Termintreue bei über 90 Prozent - bei kürzeren Durchlaufzeiten.‣ weiterlesen

Wenn sich am 30. Mai die Hallentore zum Flagschiff der Deutschen Messe öffnen, kann das als Startschuss für das postpandemische Messegeschehen gelten. Denn die Hannover Messe nimmt traditionell eine Sonderrolle unter den Industrieausstellungen ein. Grund dafür ist auch das hochkarätige Begleitprogramm, das diesmal mit 600 Vorträgen auf sechs Bühnen die Angebote der 2.500 Aussteller einrahmt.‣ weiterlesen

In diesem Jahr findet die Intralogistikmesse Logimat wieder in Präsenz statt. Und laut Veranstalter bewegen sich die Buchungen wieder auf Vor-Pandemie-Niveau. 1.500 Aussteller werden vom 31. Mai bis zum 2. Juni in Stuttgart erwartet.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige