Anzeige
Anzeige
Anzeige
Beitrag drucken

Blaupause der KI-Strategie

Schritt für Schritt die KI ins Haus holen

Wer mit maschinellem Lernen jede Produktionsstraße automatisieren möchte, erwartet zuviel von künstlicher Intelligenz. Wird jedoch ein konkreter Nutzen in den Mittelpunkt eines Projektes gestellt, ist die passende Technologie schnell gefunden – und Ergebnisse, auf denen sich aufbauen lässt.

Robot on laptop, 3D Rendering (Bild: ©Westend61/gettyimages.com)

(Bild: ©Westend61/gettyimages.com)

Der IT-Branchenverband Bitkom betrachtet künstliche Intelligenz (KI) als den wichtigsten Treiber der Digitalisierung. Die Technologie wird das Herzstück der digitalen Wirtschaft bilden, prognostiziert der Verband. Damit sich das Identifizieren und Anwenden von Mustern aus Datensätzen über statistische Korrelationen sowie das Schlussfolgern aufgrund von semantischen Beziehungen stärker als bisher verbreitet, muss allerdings noch einiges passieren. Auf diesen beiden Prinzipien beruht die Fähigkeit von Maschinen, Texte, Sprache und Bilder zu erkennen. Zudem definiert sich KI als ein System aus Hard- und Software, das auf seine Umgebung reagiert, selbstständig lernt und handeln kann.

Basis wird geschaffen

Die Bitkom-Prognose lässt sich als Auftrag verstehen, den Abstand zu den führenden Nationen USA und China zu verkürzen. In diesem Kontext betonen KI-Experten und Analysten, dass KI-Technologie Unternehmen die Chance eröffnet, über Automatisierung Prozesse zu verbessern. Genau das streben viele Unternehmen in Deutschland an, die sich mit KI-Systemen beschäftigen. Ihr Ziel ist eine höhere Wertschöpfung. Allerdings erweist sich das Zusammenspiel von KI und einem Roboter oder einer Maschine in komplexen Produktionsanlagen als herausfordernd. Jedoch lässt sich in der Praxis beobachten, dass viele produzierende Firmen gerade eine Basis schaffen, um KI in die Informationen zwischen Maschinen, Materialien, Produkten sowie Mitarbeitern stärker einzubinden und so erweiterte Analyse-, Unterstützungs- und Automatisierungsmöglichkeiten zu nutzen. Wie in anderen Branchen auch, konzentrieren sich Unternehmen in der Fertigungsindustrie auf die KI-Teildisziplin maschinelles Lernen (Machine Learning, ML), das sich technologisch von Schlussfolgern (Reasoning), Spracherkennung und -verarbeitung (Natural Language Processing, NLP) sowie automatisiertem Planen (Planning) abgrenzt. Allerdings sind die Übergänge dabei fließend. Bei ML nutzt ein digitales System einen Algorithmus, der in Iterationen mit Daten trainiert wird, in der Folge lernt und Erkenntnisse liefert. Abhängig von den vorhandenen Datensätzen werden Algorithmen für überwachte, unüberwachte oder spezielle Lernverfahren eingesetzt. Für komplexe Lernsituationen eignen sich beispielsweise die Deep Learning Ansätze.

Viel Rechenleistung nötig

Maschinelles Lernen mit sogenannten neuronalen Netzen erfordert viel Rechenleistung. Die Trainingsdatensätze müssen einen entsprechenden Umfang haben, die Netze werden für realistische Erkennungsaufgaben schnell sehr groß. Bei Deep Learning werden Schichten neuronaler Netze aufgebaut, die auf bestimmte Teilaufgaben trainiert werden und früher mangels ausreichender Rechenleistung nicht effizient eingesetzt werden konnten. Bei gestaffelten, tiefen neuronalen Netzen wird über Cluster aus Grafikkarten gerechnet, die teilweise bereits spezielle, sogenannte Tensor-Cores für Lernalgorithmen mitbringen. Googles Open Source Framework TensorFlow für maschinelles Lernen unterstützt solch ein GPU (Graphics Processing Unit)-Computing. Ultraskalierbare Hochleistungsserver decken diesen Bedarf ebenfalls ab, indem sie leistungsstarke Prozessoren (CPU) und Grafikprozessoren (GPU) sowie Speicher- und Rechner-Module kombinieren. Unter diesen Voraussetzungen können Unternehmen geschäftskritische Workloads schnell bereitstellen, die sich über zusätzliche Grafikprozessoren um Maschinenlernen- und KI-Kapazität erweitern lassen. Für den Einsatz von Deep-Learning-Algorithmen können Unternehmen Grafikprozessoren heute bei unterschiedlichen Cloudanbietern als virtuelle Maschine (VM) ordern. Auch für KI-Anwendungen erweist sich die Cloud meist als flexibelste und skalierbarste Lösung. Die Frage nach der Technologie und IT-Infrastruktur für die Umsetzung stellt sich jedoch erst, wenn der Business Case steht. Unternehmen müssen daher zunächst den Anwendungsfall für den KI-Einsatz definieren. Dabei hat es sich bewährt, mit einem einfachen und zunächst unkritischen Anwendungsszenario erste Erfahrungen zu sammeln. Der Erfolg hängt jedoch von unterschiedlichen Faktoren ab. Entscheidenden Einfluss haben beispielsweise Datenqualität und -relevanz. Um mit den relevanten Daten Maschinen richtig zu trainieren, wird KI-Wissen benötigt, welches sich Unternehmen u.a. durch Kooperationen mit anderen Unternehmen, Hochschulen oder Startups ins Haus holen können. Zudem stehen Unternehmen vor der Aufgabe, intern eine KI-Kultur zu schaffen. Diese fängt damit an, Bedenken der Mitarbeiter ernst zu nehmen und etwaige Vorbehalte offen anzusprechen und auszuräumen.

Verschiedene Ansatzpunkte

In der Fertigungsbranche gibt es heute verschiedene Ansatzpunkte, bei denen KI Echtzeit-Informationen verarbeitet. In Frage kommen dabei u.a. Produkttests und Qualitätskontrolle, ein verbesserter Mitarbeitereinsatz und der optimierte Betrieb von Systemen und Anlagen. Perspektivisch gewinnen Innovationen auf der Prozessebene an Bedeutung. Künstliche Intelligenz kann dabei interne Abläufe verbessern sowie Produkte miteinander verknüpfen und erweitern. Klar abgegrenzte Anwendungsfälle lassen sich schnell realisieren und stellen rasch ihren Nutzen unter Beweis. Daraus können sich Unternehmen eine Blaupause für weitere Projekte schaffen. n in der Innovationsabteilung Atos C-LAB und Mitglied der Atos Scientific Community


Das könnte Sie auch interessieren:

Ein im September 2019 als Weißdruck erschienener Standard des VDI soll helfen, die Potenziale von Formgedächtnislegierungen bei der Produktentwicklung zu nutzen. Der Hintergrund der neuen Richtlinienreihe VDI 2248 ist, dass feinwerktechnische Systeme immer kleinere leistungsfähigere Antriebe benötigen. Um dem gerecht zu werden, ist oft der Einsatz neuer Aktorprinzipien gefragt.‣ weiterlesen

Mit der neuen Cloud-Lösung Godesys One bietet der Mainzer ERP-Anbieter Godesys AG insbesondere kleineren Unternehmen mit fünf bis 25 Usern eine Einstiegslösung für digitales ERP. Die standardisierten Systemmodule sollen wichtige Funktionen abdecken und sich bedarfgerecht zusammenzustellen lassen.‣ weiterlesen

Das Zusammenspiel von IoT und Blockchain eröffnet neue Möglichkeiten: Mit Smart Contracts können etwa Zustandsdaten einer Maschine sicher an ihren Hersteller übermittelt werden. Und auch hinsichtlich des Energiebedarfs wird die Blockchain für die Industrie interessanter.‣ weiterlesen

Deutschland zählt mit einer Roboterdichte von 338 Einheiten pro 10.000 Arbeitnehmern im internationalen Vergleich zu den am stärksten automatisierten Volkswirtschaften. Nach Singapur und Südkorea rangiert die Bundesrepublik weltweit auf dem dritten Rang.‣ weiterlesen

Teil der Vision Industrie 4.0 ist es, Anlagekomponenten ohne Eingriff in die Steuerung austauschen zu können. Mit dem Konzept einer dienstbasierten Fertigung wollen das Fraunhofer IESE und weitere Projektpartner genau das praxistauglich ermöglichen.‣ weiterlesen

Über V2X-Kommunikation lassen sich Fahrzeuge untereinander und mit der umliegenden Infrastruktur vernetzen. Auf einmal müssen Anwendungsentwickler Komponenten berücksichtigen, deren Funktionalität sie nicht beeinflussen. Die passende Softwarearchitektur hilft, diese Herausforderung im Dschungel sich weltweit entwickelnder Standards zu lösen.‣ weiterlesen

Mit dem SMIT TestKit Shop hat Sven Mahn IT den Zugang zu ihrem Produkt zur Testoptimierung und Qualitätssicherung der ERP-Lösungen Microsoft Dynamics 365 for Finance and Operations und Dynamics AX vereinfacht.‣ weiterlesen

Die CRM-Lösung CAS GenesisWorld von CAS Software steht als Release x11 zur Verfügung. Neu hinzugekommen ist zum Beispiel, dass Anwender die intelligente Suchfunktion Picasso nun auch auf mobilen Endgeräten nutzen können.‣ weiterlesen

Mit dem Industrial Internet of Things steht Produzenten eine neue Infrastrukturebene zur Verfügung, um ihre Abläufe und Fertigungsprozesse zu optimieren. Thorsten Strebel von MPDV schildert, wie die Technologien auf die MES-Welt einwirken und wie der MES-Hersteller darauf reagiert.‣ weiterlesen

Mit dem neuen Geschäftsfeld Maxolution Maschinenautomatisierung adressiert SEW-Eurodrive den Markt mit maßgeschneiderten Systemlösungen. Gemeinsam mit dem Maschinenbauer EMAG hat der Antriebsspezialist nun einen Portalroboter vorgestellt, der ohne Energieführungsketten auskommt und auch anfallende Daten kabellos überträgt.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige