Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Blaupause der KI-Strategie

Schritt für Schritt die KI ins Haus holen

Wer mit maschinellem Lernen jede Produktionsstraße automatisieren möchte, erwartet zuviel von künstlicher Intelligenz. Wird jedoch ein konkreter Nutzen in den Mittelpunkt eines Projektes gestellt, ist die passende Technologie schnell gefunden – und Ergebnisse, auf denen sich aufbauen lässt.

Robot on laptop, 3D Rendering (Bild: ©Westend61/gettyimages.com)

(Bild: ©Westend61/gettyimages.com)

Der IT-Branchenverband Bitkom betrachtet künstliche Intelligenz (KI) als den wichtigsten Treiber der Digitalisierung. Die Technologie wird das Herzstück der digitalen Wirtschaft bilden, prognostiziert der Verband. Damit sich das Identifizieren und Anwenden von Mustern aus Datensätzen über statistische Korrelationen sowie das Schlussfolgern aufgrund von semantischen Beziehungen stärker als bisher verbreitet, muss allerdings noch einiges passieren. Auf diesen beiden Prinzipien beruht die Fähigkeit von Maschinen, Texte, Sprache und Bilder zu erkennen. Zudem definiert sich KI als ein System aus Hard- und Software, das auf seine Umgebung reagiert, selbstständig lernt und handeln kann.

Basis wird geschaffen

Die Bitkom-Prognose lässt sich als Auftrag verstehen, den Abstand zu den führenden Nationen USA und China zu verkürzen. In diesem Kontext betonen KI-Experten und Analysten, dass KI-Technologie Unternehmen die Chance eröffnet, über Automatisierung Prozesse zu verbessern. Genau das streben viele Unternehmen in Deutschland an, die sich mit KI-Systemen beschäftigen. Ihr Ziel ist eine höhere Wertschöpfung. Allerdings erweist sich das Zusammenspiel von KI und einem Roboter oder einer Maschine in komplexen Produktionsanlagen als herausfordernd. Jedoch lässt sich in der Praxis beobachten, dass viele produzierende Firmen gerade eine Basis schaffen, um KI in die Informationen zwischen Maschinen, Materialien, Produkten sowie Mitarbeitern stärker einzubinden und so erweiterte Analyse-, Unterstützungs- und Automatisierungsmöglichkeiten zu nutzen. Wie in anderen Branchen auch, konzentrieren sich Unternehmen in der Fertigungsindustrie auf die KI-Teildisziplin maschinelles Lernen (Machine Learning, ML), das sich technologisch von Schlussfolgern (Reasoning), Spracherkennung und -verarbeitung (Natural Language Processing, NLP) sowie automatisiertem Planen (Planning) abgrenzt. Allerdings sind die Übergänge dabei fließend. Bei ML nutzt ein digitales System einen Algorithmus, der in Iterationen mit Daten trainiert wird, in der Folge lernt und Erkenntnisse liefert. Abhängig von den vorhandenen Datensätzen werden Algorithmen für überwachte, unüberwachte oder spezielle Lernverfahren eingesetzt. Für komplexe Lernsituationen eignen sich beispielsweise die Deep Learning Ansätze.

Viel Rechenleistung nötig

Maschinelles Lernen mit sogenannten neuronalen Netzen erfordert viel Rechenleistung. Die Trainingsdatensätze müssen einen entsprechenden Umfang haben, die Netze werden für realistische Erkennungsaufgaben schnell sehr groß. Bei Deep Learning werden Schichten neuronaler Netze aufgebaut, die auf bestimmte Teilaufgaben trainiert werden und früher mangels ausreichender Rechenleistung nicht effizient eingesetzt werden konnten. Bei gestaffelten, tiefen neuronalen Netzen wird über Cluster aus Grafikkarten gerechnet, die teilweise bereits spezielle, sogenannte Tensor-Cores für Lernalgorithmen mitbringen. Googles Open Source Framework TensorFlow für maschinelles Lernen unterstützt solch ein GPU (Graphics Processing Unit)-Computing. Ultraskalierbare Hochleistungsserver decken diesen Bedarf ebenfalls ab, indem sie leistungsstarke Prozessoren (CPU) und Grafikprozessoren (GPU) sowie Speicher- und Rechner-Module kombinieren. Unter diesen Voraussetzungen können Unternehmen geschäftskritische Workloads schnell bereitstellen, die sich über zusätzliche Grafikprozessoren um Maschinenlernen- und KI-Kapazität erweitern lassen. Für den Einsatz von Deep-Learning-Algorithmen können Unternehmen Grafikprozessoren heute bei unterschiedlichen Cloudanbietern als virtuelle Maschine (VM) ordern. Auch für KI-Anwendungen erweist sich die Cloud meist als flexibelste und skalierbarste Lösung. Die Frage nach der Technologie und IT-Infrastruktur für die Umsetzung stellt sich jedoch erst, wenn der Business Case steht. Unternehmen müssen daher zunächst den Anwendungsfall für den KI-Einsatz definieren. Dabei hat es sich bewährt, mit einem einfachen und zunächst unkritischen Anwendungsszenario erste Erfahrungen zu sammeln. Der Erfolg hängt jedoch von unterschiedlichen Faktoren ab. Entscheidenden Einfluss haben beispielsweise Datenqualität und -relevanz. Um mit den relevanten Daten Maschinen richtig zu trainieren, wird KI-Wissen benötigt, welches sich Unternehmen u.a. durch Kooperationen mit anderen Unternehmen, Hochschulen oder Startups ins Haus holen können. Zudem stehen Unternehmen vor der Aufgabe, intern eine KI-Kultur zu schaffen. Diese fängt damit an, Bedenken der Mitarbeiter ernst zu nehmen und etwaige Vorbehalte offen anzusprechen und auszuräumen.

Verschiedene Ansatzpunkte

In der Fertigungsbranche gibt es heute verschiedene Ansatzpunkte, bei denen KI Echtzeit-Informationen verarbeitet. In Frage kommen dabei u.a. Produkttests und Qualitätskontrolle, ein verbesserter Mitarbeitereinsatz und der optimierte Betrieb von Systemen und Anlagen. Perspektivisch gewinnen Innovationen auf der Prozessebene an Bedeutung. Künstliche Intelligenz kann dabei interne Abläufe verbessern sowie Produkte miteinander verknüpfen und erweitern. Klar abgegrenzte Anwendungsfälle lassen sich schnell realisieren und stellen rasch ihren Nutzen unter Beweis. Daraus können sich Unternehmen eine Blaupause für weitere Projekte schaffen. n in der Innovationsabteilung Atos C-LAB und Mitglied der Atos Scientific Community


Das könnte Sie auch interessieren:

Bosch Rexroth hat mit ActiveCockpit eine interaktive Kommunikationsplattform im Portfolio, die Fertigungsdaten in Echtzeit aus verschiedenen Systemen und Datenquellen verarbeitet und visualisiert. Der Einsatz bei Bosch Thermotechnik in Wetzlar zeigt, dass die Lösung Transparenz in die Lagerlogistik bringen kann.‣ weiterlesen

Die Anpassungsmöglichkeiten eines ERP-Systems entwickeln sich immer mehr zum Unterscheidungsmerkmal aktueller Systeme. Doch welche Möglichkeiten für die individuelle Ausprägung gibt es - und welche Vor- und Nachteile bieten sie?‣ weiterlesen

Novayre Solutions SL und dessen RPA-Plattform Jidoka gehören nun zu Appian. Mit dem Erwerb will das amerikanischen IT-Unternehmen seine Prozessautomatisierungsplattform um Werkzeuge für Robotic Process Automation ergänzen.‣ weiterlesen

Nutzer von Citrix-Systemen sollten unbedingt die aktuell bekannt gewordene Sicherheitslücke per Workaround schließen. Das meldet das BSI erneut, nachdem sich die Zahl der bekannt gewordenen Cyberangriffe über diese Schwachstelle häufen.‣ weiterlesen

Jörg Jung leitet beim ERP-Hersteller Infor seit mehr als zwei Jahren als verantwortlicher Geschäftsführer die Regionen Zentral- und Osteuropa. In diesem Zeitraum konnte der Softwareanbieter sein Geschäft fast verdoppeln, merkte Jung im Gespräch mit der IT&Production an. Vor allem der Absatz mit Cloud-Lösungen scheint zu brummen: In den letzten zwei Jahren sei der Umsatz mit den Multi-Tenant-Lösungen weltweit um den Faktor zehn gestiegen.‣ weiterlesen

Rockwell Automation hat den israelischen Cybersecurity-Anbieter Avnet Data Security übernommen. Das Unternehmen bietet seinen Kunden Services wie Risikobewertungen, Penetrationstests, Netzwerk- und Sicherheitslösungen sowie Schulungen zur Verschmelzung von IT und OT unter dem Gesichtspunkt der Cybersecurity an. ‣ weiterlesen

In der Werkshalle von morgen sind nur noch die Außenwände fest verbaut. Maschinen und Anlagen bewegen sich frei und kommunizieren miteinander. Wichtige Voraussetzung hierfür: Eine dezentrale Versorgungs- und Dateninfrastruktur. Mit dem intelligenten Boden hat Bosch Rexroth ein solches System entwickelt - und dabei Lösungen von Weidmüller verbaut.‣ weiterlesen

In einer Industrie 4.0 stellen vernetzte Maschinen nicht nur Produkte her, sie generieren auch massenhaft Daten. Mit einem ERP-System als Informationsdrehscheibe lassen sich diese Produktionsdaten mit anderen Geschäftsbereichen verknüpfen und so die Wertschöpfung ankurbeln.‣ weiterlesen

Per Radiofrequenzidentifikation lassen sich Waren entlang der gesamten Lieferkette nachverfolgen - oder gleich lückenlos ihren Zustand dokumentieren. Erst RFID-Technologie ermöglicht viele Anwendungen, die mit Industrie 4.0 verbunden werden.‣ weiterlesen

Der ERP-Anbieter Proalpha hat einen Wechsel an der Unternehmensspitze bekanntgegeben. Eric Verniaut übernimmt das Amt des CEO.‣ weiterlesen

Die Siemens AG hat die AIT GmbH übernommen. Das Stuttgarter Unternehmen bietet Softwarelösungen auf der Basis von Microsoft .NET Plattformen an.‣ weiterlesen

Anzeige
Anzeige
Anzeige