Anzeige
Anzeige
Anzeige
Beitrag drucken

Ausschuss oder Gutteil?

Produktqualität mit der Kristallkugel prüfen

Handelt es sich bei dem aktuell produzierten Artikel um Ausschuss oder Gutstück? Mit Predictive Quality ist der Blick in die digitale Glaskugel möglich. Das Ziel dabei ist, fehlerhafte Produkte früh auszuschleusen und so unnötigen Aufwand und Kosten zu sparen.

Bild: ©Andrey Popov/stock.adobe.com

Bild: ©Andrey Popov/stock.adobe.com

Bisher wurden Fehler häufig erst im Nachhinein diagnostiziert, was in der Regel zu zusätzlichen Kosten führte. Eine durch Predictive Quality erweiterte Qualitätskontrolle ermöglicht es, im laufenden Betrieb Prozessdaten in Echtzeit zu interpretieren und daraus Qualitätsvorhersagen abzuleiten. Hierbei werden gesammelte Daten aus relevanten Datenquellen auf Risikomuster analysiert, um die Qualität zu verbessern und Kosten zu sparen.

Predictive Quality lebt von Daten

Die Grundlage für Predictive Quality sind Daten, Daten, Daten. Die Anwendung führt Qualitäts-, Maschinen- und Sensordaten sowie Umgebungsdaten vor Ort oder in der Cloud zusammen. Es werden dazu möglichst umfangreiche und vielfältige Prozessdaten benötigt, die sich zwecks Qualitätseinstufung mit dazu passenden Qualitätsdaten korrelieren lassen. Für Fertigungsunternehmen bedeutet dies: Je größer und qualifizierter die Datenbasis, desto besser die Voraussetzungen, Zuverlässigkeit und Genauigkeit der Predictive Quality. Aber woher stammen diese Informationen? Bei der Erfassung relevanter Daten kann ein modernes Manufacturing Execution System (MES) und etwa ein Edge Device zur schnellen, dezentralen Datenverarbeitung unterstützen. Auf dieser Datenbasis lässt sich ein Vorhersagemodell entwickeln, das in die Predictive-Quality-Anwendung einfließt. Hier werden die Daten in Realtime interpretiert und es erfolgt die Einordnung in ein gutes Teil oder Ausschuss sowie die Wahrscheinlichkeit für die Richtigkeit der Vorhersage. So kann die automatische Qualitätsentscheidung fallen, bei der in der Regel Machine-Learning-Verfahren zum Einsatz kommen.

Voraussetzungen und Grundlagen

Das Internet of Things (IoT) spielt als Voraussetzung für die Umsetzung der prädiktiven Qualitätssicherung eine übergeordnete Rolle. Es vernetzt die Informationen der Fertigung mit dem ECO-System des Produktes außerhalb der Fabrik. Somit eröffnen sich neue Möglichkeiten der automatisierten Steuerung von Aktionen und Services rund um ein Produkt bzw. Anlagen und Maschinen innerhalb des Fertigungsprozesses. Für die Einführung einer Predictive-Quality-Lösung müssen entsprechende MES-Daten mit IoT-Daten verknüpft werden, so dass diese in Echtzeit z.B. auf einem Edge Device verarbeitet werden können. Mittels entsprechender Interfaces können dann Digital-Twin-Daten der Maschinen sowie Informationen über das erzeugte Produkt (wie die in ihm verbauten Halberzeugnisse) an IIoT-Infrastrukturen weitergeleitet werden, um zusätzliche Analysen durchzuführen.

Daten und Prozesse verknüpfen

Wenn alle Daten zur Verfügung stehen, gilt es, Verbindungen zu schaffen und alle Prozessschritte miteinander zu verketten. Eine Predictive-Quality-Anwendung ist jedoch immer individuell zu sehen. Denn die Produktionsprozesse in Fabriken sind unterschiedlich und weisen oftmals Abweichungen in Maschinen und Toleranzen auf. Die Predictive-Quality-Lösungen und korrespondierende Anwendungen wie das MES müssen daher auf die Anforderungen des Unternehmens zugeschnitten werden. Um die Pflege und Skalierung der Lösungen in Eigenregie zu sichern, brauchen Unternehmen geschulte Verantwortliche wie MES- und IoT-Experten.

Entwicklung und Perspektiven

Predictive Quality ist eine logische Ergänzung zu Predictive Maintenance (Vorhersage von Störungen und Maschinenausfällen) sowie Lösungen generell, die vorausschauend arbeiten, wie Predictive Planning. Sie alle haben Kosteneinsparungen und höhere Zuverlässigkeit beziehungsweise Qualität durch automatisierte Prozesse zum Ziel. Noch ist der Markt im Bereich Predictive Quality nicht allzu stark entwickelt. Durch die zunehmende Kombination von IoT- und MES-Daten in der Produktion ist der Weg zum verstärkten Einsatz dieser Szenarien jedoch geebnet. Standardisierung, Maschineninterfaces und Digital-Twin-Daten werden hierbei an Bedeutung gewinnen. Der Markt für Digital Twins soll in den kommenden Jahren jedenfalls deutlich wachsen. Gartner prognostiziert, dass 2021 bereits die Hälfte aller großen Industrieunternehmen digitale Zwillinge im Einsatz haben werden.

Was folgt auf Predictive Quality?

Derzeit beschränkt sich das Feld der vorausschauenden Anwendungen noch in erster Linie auf die Fabrik. In Zukunft wird auch das Umfeld – z.B. Lieferanten – vermehrt einbezogen werden, um nachfolgende Services und smarte Produkte (die sich beispielsweise selbst warten) zu ermöglichen. Durch automatische Rückschlüsse aus erhobenen Daten zwecks Predictive Services könnte beispielsweise ein Automobilhersteller erkennen, wann welche Produkte Ersatzteile benötigen. Damit lassen sich Serviceeinsätze für die überwachten Produkte vorbeugend planen, Ausfälle vermeiden und vieles mehr.


Peter Bollinger ist CEO der iTAC Software AG.


Das könnte Sie auch interessieren:

Google Cloud und Siemens wollen im Rahmen einer Partnerschaft und unter Einsatz von KI-Technologien Fertigungsprozesse verbessern.‣ weiterlesen

Die ZEW-Konjunkturerwartungen für Deutschland sinken in der aktuellen Umfrage vom April 2021 um 5,9 Punkte und liegen damit bei 70,7 Punkten. Dies ist der erste Rückgang seit November 2020. Laut ZEW liegen die Erwartungen nach wie vor auf einem sehr hohen Niveau.‣ weiterlesen

Drei Viertel der Entscheider in deutschen Industrieunternehmen sehen ihren Markt im Prozess der digitalen Transformation. Die Hälfte der Unternehmen setzt dabei bereits auf den Einsatz von Industrial IoT-Technologien. Zu diesen Ergebnissen kommt eines Studie des IIoT-Spezialisten Relayr, die unter 200 Entscheidern aus der Fertigungsindustrie in Deutschland im Sommer 2020 vom Marktforschungsunternehmen Forsa durchgeführt wurde.‣ weiterlesen

Damit die anspruchsvollen Maschinen von Heidelberger Druckmaschinen nicht ungeplant ausfallen, bietet das Unternehmen die Software Maintenance Manager zur vorausschauenden Wartung an. Jetzt hat Tochterunternehmen Docufy das Tool hinter der Lösung als White-Label-Angebot auf den Markt gebracht.‣ weiterlesen

Im Rahmen einer Partnerschaft wollen T-Systems und GFT gemeinsame Lösungen für die Fertigungsindustrie anbieten, mit denen Fehler in der Produktion schneller erkannt werden können.‣ weiterlesen

John Abel wechselt von Veritas zu Extreme Networks, wo er künftig die Position des CIOs wahrnehmen wird.‣ weiterlesen

Nach fünf Messetagen ging am Freitag die Hannover Messe zu Ende. Insgesamt 90.000 Teilnehmer haben sich für die digitale Edition der Industrieschau registriert. Auch ohne Präsenzveranstaltung zog die Deutsche Messe ein positives Fazit. Ein Ersatz sei die digitale Messe jedoch nicht, so Dr. Jochen Köckler, Vorstandsvorsitzender der Deutschen Messe. Die nächste Messe soll als Hybridveranstaltung teilnehmen.‣ weiterlesen

Produzierende Unternehmen brauchen Transparenz über Zusammenhänge, über Kosten und Erträge und die Prozessqualität. Business Intelligence ist die Antwort der Softwareanbieter für dieses Problem. Für SAP S/4Hana-Anwender könnte dafür insbesondere die SAP Analytics Cloud interessant sein.‣ weiterlesen

Seit gut eineinhalb Jahren betreibt Simus Systems eine Online-Plattform, auf der Auftraggeber und Auftragnehmer die Metallbearbeitung von Bauteilen kalkulieren - und das Interesse am Tool ist rege. Anwender laden ihr CAD-Modell hoch und erhalten eine valide Vorkalkulation des geplanten Bauteils.‣ weiterlesen

Erst die Interoperabilität von Maschinen und Anlagen ermöglicht Unternehmen die Teilhabe an neuen digitalen Strukturen und ist Grundvoraussetzung für neue digitale Geschäftsmodelle. Durch interoperable Schnittstellen können neue Maschinen effizienter integriert werden. Die VDMA-Studie ‘Interoperabilität im Maschinen- und Anlagenbau‘ zeigt die Relevanz von interoperablen Schnittstellen und dazugehörigen Standards in den Unternehmen.‣ weiterlesen

Im Gewerbebau gehört ein differenziertes Zutrittsmanagement zum Standard der meisten Ausschreibungen. Für Betriebe lohnt es, sich mit dem Thema zu beschäftigen. Denn die Infrastruktur sollte später neue Anforderungen im Besuchermanagement ohne hohe Mehrkosten abbilden können.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige