Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Standards

‚AutomationML‘ und ‚eCl@ss‘ kombinieren

Egal ob es sich um ein Auto, einen Drucker mit Scanner- und Faxfunktion oder um einen Schaltschrank handelt – vor jedem neuen Produkt steht das Engineering. Durch die Kombination der etablierten Standards ‚AutomationML‘ und ‚eCl@ss‘ lässt sich ein durchgängiger Prozess umsetzen, der nicht nur hilft, Fehler zu vermeiden, sondern auch erheblichen Aufwand einsparen kann.



Ein durchgängiges Engineering funktioniert nur dann, wenn die Datenweitergabe zwischen unterschiedlichen Werkzeugen problemlos möglich ist.
Bild: Phoenix Contact Deutschland GmbH

Produkte werden zumeist nicht mit einem einzigen Engineering-Werkzeug entwickelt. In den meisten Fällen kommen verschiedene Tools zum Einsatz. Da die Werkzeuge in der Engineering-Kette verschiedene Aufgabenstellungen lösen, sprechen sie jeweils ihre eigene, spezialisierte Sprache. Das kann bedeuten, dass die Datenformate der einzelnen Tools weder untereinander kompatibel sind, noch auf einer gemeinsamen Semantik-Definition basieren. Darüber hinaus gibt es unter Umständen nur wenige Schnittstellen, die die Werkzeuge miteinander verbinden. Während des Engineering-Prozesses kann ein großer Aufwand entstehen, um die Daten aus einem in das andere Format zu überführen.

Vor diesem Hintergrund wäre es zielführender, wenn ein gemeinsames Datenformat für alle Engineering-Tools verwendet werden kann, das sich selbst nach Beendigung des Engineering zur Steuerung der Produktion des entwickelten Artikels nutzen lässt.

Hohe Anforderungen

Die Anforderungen an ein derartiges Datenformat sind entsprechend hoch und können weder vom Klassifizierungs-Standard eCl@ss noch von AutomationML als Format für die Speicherung sowie zum Austausch von Anlagenplanungs-Daten erfüllt werden. Durch eine Kombination aus beiden Standards lässt sich jedoch ein durchgängiges Engineering realisieren. Zum Engineering eines Schaltschranks gehören unter anderem der Entwurf eines Schaltplans, die Auswahl der für diesen Schaltplan geeigneten Produkte sowie die Planung des mechanischen Montage-Aufbaus und der Verdrahtung im Schaltschrank. Dabei ist die Reihenfolge der Werkzeuge nicht explizit vorgegeben, sondern ergibt sich häufig von selbst.

Beispielsweise wird zunächst der Schaltplan mit dem jeweiligen Tool erstellt, das eine Schnittstelle zu den Produkt-Konfiguratoren der elektronischen Komponenten umfasst. Aus dem Schaltplan leitet sich dann eine konfektionierte Klemmenleiste ab, die der Planung des Montage-Aufbaus zur Verfügung gestellt werden muss. Der Montage-Aufbau dient wiederum als Grundlage für das Verdrahtungskonzept. Schnittstellen für derartige Engineering-Ketten liegen heute bereits vor, allerdings meist nur in eine Richtung. Selbst kleinere Änderungen – wie das Austauschen einer Reihenklemme gegen eine Variante mit einer anderen Anschlusstechnik – können zu einem erheblichen Aufwand an Nacharbeiten führen. Existieren die Schnittstellen nicht, müssen die Projektdaten oftmals umständlich konvertiert oder sogar manuell übertragen werden. Auf dem Weg durch die verschiedenen Engineering-Werkzeuge können zudem Daten verloren gehen.

Im Ergebnis sind dann die detaillierten Informationen aus den Produkt-Konfiguratoren für die Verdrahtungs-Planung nicht mehr vorhanden. Es wäre deshalb vorteilhaft, wenn alle Engineering-Tools mit einem gemeinsamen Datenformat arbeiten könnten. Auf diese Weise ließen sich die Konvertierungen und die daraus resultierenden Informationsverluste vermeiden. Außerdem könnte so die Engineering-Kette einfacher verlassen werden. Ein gemeinsames Datenformat bedingt jedoch eine Semantik-Definition, also eine einheitliche Definition der innerhalb der gesamten Kette auftretenden Aspekte. Gibt es sie nicht, kann es passieren, dass sich die Werkzeuge trotz des gleichen Datenformats nichts verstehen.



Das Beispiel einer Stromversorgung zeigt, dass die Leitungen durch die Kombination von Schaltplan-Informationen und Produktdaten nach der Platzierung der Geräte im 3D-Aufbau automatisch geroutet werden. Bild: Phoenix Contact Deutschland GmbH

Rollenklassen-Bibliotheken

2005 hat die Automatisierungs-Initiative Deutscher Automobilhersteller die Kosten der Fabrikautomation analysiert. Die Studie kam zu dem Ergebnis, dass das Engineering von Anlagen einen wesentlichen Kostenfaktor darstellt, und hier insbesondere das Übertragen von Engineering-Daten von einem Werkzeug auf das nächste. Daraufhin hat die Daimler AG 2006 die Entwicklung und Standardisierung von AutomationML als Datenaustausch-Format für Engineering-Tools initiiert. Das entsprechende Industriekonsortium ist 2009 in einen Verein übergegangen.

Bei AutomationML handelt es sich um ein XML-basiertes Austauschformat für Engineering-Daten, das andere vorhandene Datenformate kombiniert. Dabei bildet Computer Aided Engineering Exchange (CAEX ) als äußere Klammer die Topologie einer Anlage ab, aus der weitere standardisierte Formate wie Collaborative Design Activity (Collada) und PLCopen XML referenziert werden können. Ursprünglich war AutomationML zur Anlagenbeschreibung gedacht. Es stellte sich allerdings heraus, dass sich mit dem Format auch Artikel beschreiben lassen, die in der Anlage hergestellt werden. Auf der Grundlage einer solch präzisen Artikelbeschreibung können intelligente technische Systeme, wie sie aktuell im Umfeld von Industrie 4.0 konzipiert werden, selbständig die Fertigungsstationen identifizieren, die zur Produktion des Artikels notwendig sind. Phoenix Contact setzt AutomationML daher im Rahmen seines Spitzencluster-Projekts Automation für wandlungsfähige Produktionstechnik (Awapro) ein. AutomationML verfolgt den Ansatz, dass sämtliche Engineering-Werkzeuge mit den gleichen Dateien arbeiten.

Jedes Tool liest und schreibt jedoch nur in den Teil, der für es selbst relevant ist. Damit alle Werkzeuge ein gemeinsames Verständnis von den in den Dateien beschriebenen Aspekten haben, umfasst AutomationML sogenannte Rollenklassen-Bibliotheken. Sämtliche Objekte im Datenaustausch-Format müssen auf eine Rollenklasse verweisen, sodass die Bedeutung respektive Klassifizierung für dieses Objekt für alle Engineering-Tools eindeutig ist. Derart umfangreiche Rollenklassen zu definieren, erweist sich als große Aufgabe, die ständig fortgeführt werden muss und AutomationML bisher noch nicht gemeistert hat. Daher ist es sinnvoll, ein bestehendes Klassifikationssystem als Rollenklassen-Bibliothek mit einzubinden.


Das könnte Sie auch interessieren:

Der Maschinenbauer Manz bündelt unter dem Namen Total Fab Solutions sein Angebot für die Automatisierung von Fertigungslinien. Im Paket abgedeckt sind Umsetzungsschritte von Automatisierungsprojekten von der Fabrikplanung über die Prozess- und Materialflusssimulation oder die Integration bestehender Fertigungsprozesse bis hin zu Aufbau, Hochfahren und Optimierung schlüsselfertig zu übergebender Produktionslösungen.‣ weiterlesen

Beim traditionellen Qualitätsmanagement werden gefertigte Bauteile analysiert, um die Qualität der nächsten zu verbessern. Beim Predictive Quality-Ansatz wollen Hersteller analysegestützt eine höhere Qualität erzielen, ohne in die Vergangenheit schauen zu müssen. Bereits verfügbare Lösungen für den Ansatz integrieren die erforderlichen Daten auf einer MES-Plattform.‣ weiterlesen

Der Aufbau einer kabelgebundenen Ortungsinfrastruktur auf großen Flächen wie Lagerhallen, Baustellen oder in der Prozessindustrie ist kostspielig und zeitaufwendig.‣ weiterlesen

KI-getriebene Convolutional Neuronal Networks in selbstfahrenden Autos sollen andere Verkehrsteilnehmer erkennen. Dabei gilt: Je selbstständiger das Auto, desto komplexer der Algorithmus und undurchschaubarer dessen Weg zur getroffenen Entscheidung. Ein Validierungs-Tool soll helfen, diesen besser zu verstehen.‣ weiterlesen

Erfolgreiche KI-Projekte kombinieren das Domänenwissen von Prozessbeteiligten mit der Expertise von Datenanalysten und IT-Spezialistinnen. Da nicht jedes Maschinenbauunternehmen über diese drei wichtigen Kompetenzfelder verfügt, sind Kooperationen wichtige Bestandteile von KI-Projekten.‣ weiterlesen

Extreme Networks hat die Verfügbarkeit des Wi-Fi 6E Access Point bekanntgegeben. Als Wireless-Plattform erweitert der Zugangspunkt den Einsatzbereich auf das 6GHz-Frequenzband. Das Gerät wurde für Umgebungen mit hohen Anforderungen an Bandbreite und Nutzerdichte entwickelt und zeichnet sich Anbieterangaben zufolge durch seine Perfomance, Funktionalität und Sicherheit aus.‣ weiterlesen

Die Ersatzteilversorgung in der Automobilindustrie besitzt einen sehr kurzfristigen Charakter. Anwendungen zum Abbilden solcher Prozesse sind S/4Hana Supply Chain Management sowie S/4Hana-Automotive-Ersatzteilmanagement. Die wichtigen Zielgrößen für die Versorgungsqualität sind Lieferservicegrad und Time-to-Delivery.‣ weiterlesen

Im Cloud-Projekt Gaia-X entstehen Infrastruktur-Angebote, mit denen Hersteller digitale und vernetzte Produkte entwickeln können, ohne in Abhängigkeit zu Technologiekonzernen zu geraten. Die Strukturen dafür sind bereits etabliert. Jetzt ist es an den Produzenten, durch ihre Mitwirkung aus dem Projekt eine europäische Erfolgsgeschichte zu machen.‣ weiterlesen

Werma bietet ein neues Ruf- und Meldesystem zur Prozessoptimierung in Fertigung, Logistik und an manuellen Arbeitsplätzen an. Mit dem Andon WirelessSet lassen sich Probleme bei der Produktion per Knopfdruck melden, um die Behebung zu beschleunigen.‣ weiterlesen

Alle Werte einer Lieferkette im Blick zu behalten, ist eine Mammutaufgabe - können diese doch schnell in die Millionen gehen. Behälter mit benötigten Materialien müssen nicht mal verschwinden, schon der falsche Lagerplatz im Werk kann die Produktion ausbremsen. Tracker können dafür sorgen, dass nichts Wichtiges aus dem Blick gerät.‣ weiterlesen

Siemens und Zscaler arbeiten zusammen, um Kunden den sicheren Zugriff vom Arbeitsplatz im Büro oder mobil auf Operational-Technology(OT)-Systeme und -Anwendungen im Produktionsnetzwerk zu ermöglichen.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige