Anzeige
Anzeige
Beitrag drucken

Anforderungen bei der KI-Modellentwicklung

IT-Plattform für Data Science

Wenn Unternehmen mehr als einen Prozess mit künstlicher Intelligenz optimieren wollen, können Data-Science-Plattformen Geschwindigkeitsvorteile bieten. Diese Lösungen bieten in der Regel verschiedene Komponenten, um Daten aufzubereiten und darzustellen.

 (Bild: Dataiku)

(Bild: Dataiku)

Data Science in der Produktion bietet viele Möglichkeiten, etwa die vorausschauende Wartung von Fertigungsanlagen. Aber auch Logistik, Personaleinsatzplanung, Qualitätskontrolle und Produktionssteuerung lassen sich durch die Analyse bestehender Daten optimieren. Doch erfüllen einzelne Data-Science-Projekte oft nicht die Erwartungen, wenn die grundlegende Voraussetzungen zum strategischen Umgang mit Daten fehlen. Um schnell sichtbare Erfolge zu erzielen, sollten die Daten an einer zentralen Stelle verfügbar sein. Die Experten aus den Fachabteilungen müssen als Teil des Projektteams in definierten Rollen mit Data Scientists zusammenarbeiten. Gleichzeitig sollte sichergestellt werden, dass die Daten vertrauenswürdig sind. Eine unternehmensweite Data Science-Plattform kann diese Voraussetzungen schaffen.

Verschiedene Komponenten

Um alle Funktionen und Prozesse rund um die Daten zentral steuern und überwachen zu können, vereint eine Data-Science-Plattform unterschiedliche Softwarekomponenten – beispielsweise zur Bereinigung und Aufbereitung der Daten – die alle über eine zentrale Oberfläche bedient werden. Ebenso können Machine-Learning-Anwendungen direkt erstellt und angewendet werden. Auch Auswertungs- und Visualisierungsfunktionen sind Teil der Software. Schließlich wird über die Plattform auch die Verteilung der Data-Science-Lösungen vorgenommen, die dann auch darüber überwacht werden.

Vorteile von Open Source

Interessant können jene Plattformen sein, die neben integrierten Software-Tools Schnittstellen zu Open-Source-Technologien bieten. Diese tragen zur Verbreitung von Data Science und Machine Learning bei. Zudem werden Open-Source-Lösungen oft an Universitäten genutzt. Neu eingestellte Mitarbeiter können sich schneller einarbeiten, wenn sie bereits Erfahrungen mit den Tools gesammelt haben.


Das könnte Sie auch interessieren:

Der Automobilzulieferer Hirschmann Automotive muss Produktionsdaten bis zu 15 Jahre lang aufheben. Eigentlich lästig, doch mit dem Rollout einer IIoT-Plattform wird die Aufbewahrungspflicht zum Sprungbrett für Optimierungen. Denn einlaufende Maschinendaten ermöglichen Applikationen wie Echtzeit-Monitoring, datenbasierte Problembewältigung und sogar KI-Analysen.‣ weiterlesen

Wer Produktion und Logistik in einer Echtzeit-Visualisierung abbildet, kann niedrigschwellig in die digitale Transformation einsteigen und viel Papier aus dem Shopfloor bannen. Ergänzt um zentrale MES-Funktionen lassen sich solche Visualisierungssysteme zur Operational Excellence-Plattform ausprägen, die bei fortlaufenden Prozessoptimierungen unterstützt.‣ weiterlesen

Zum 1. Januar übernimmt Jörg Tewes den Posten des CEO bei Exasol. Er kommt von Amazon zum Analytics-Spezialisten.‣ weiterlesen

Industrielle Trends wie IIoT und Digitalisierung setzen immense Datenströme voraus. Doch im Gegensatz zur IT-Security für Büros müssen Fabrikbetreiber auf wesentlich mehr Stolpersteine achten, damit ihre Anlagen nicht schon einfachen Angriffen zum Opfer fallen.‣ weiterlesen

Ab und zu fehlte ein Schlüssel im Kloster der Franziskanerinnen der ewigen Anbetung von Schwäbisch Gmünd. Beim letzten Mal gab das den Impuls, anstatt neue mechanische Zylinder in die rund 220 Türen des Komplexes einzubauen, die alte Technik durch das Bluesmart-System von Winkhaus zu ersetzen.‣ weiterlesen

Mit 100,5 Punkten hält sich das IAB-Arbeitsmarktbarometer im November stabil und liegt weiter im leicht über der neutralen Marke. Auf europäischer Ebene sank der Frühindikator allerdings erneut.‣ weiterlesen

In einer neuen Expertise des Forschungsbeirats Industrie 4.0 untersuchen das FIR an der RWTH Aachen und das Industrie 4.0 Maturity Center den Status-quo und die aktuellen Herausforderungen der deutschen Industrie bei der Nutzung und wirtschaftlichen Verwertung von industriellen Daten und geben Handlungsempfehlungen für Unternehmen, Verbände, Politik und Wissenschaft.‣ weiterlesen