Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Datenmanagement

Dark Data – die dunkle Seite des Wissensmanagements

Der Begriff Dark Data lässt aufhorchen, klingt er doch nach Unheil. Ganz falsch liegt man mit dem ersten Eindruck nicht. Die dunklen Daten bergen tatsächlich Risiken für Unternehmen. Allerdings besteht die Kerngefahr nicht etwa darin, dass sie illegal sind – sondern, dass sie bislang als unkontrollierbar galten. Wie können Unternehmen sie sich sogar zunutze machen?

Dark Data

Bild:©Sven Hoppe/Fotolia.com

Bei der Diskussion um Big Data wird oft übersehen, dass die Schere zwischen der Menge an nützlichen Daten und der Verarbeitungskapazität immer größer wird. Das belegen auch neue Erhebungen des IDC-Instituts, welches davon ausgeht, dass die Gesamtmenge gesammelter Daten weltweit von rund 8,6 Zettabyte im Jahr 2015 auf rund 44 Zettabyte im Jahr 2020 anwachsen wird. Das entspricht etwa dem 50-fachen Wachstum zwischen 2010 und 2020. Eine exponentiell wachsende Herausforderung.

Big, Bigger, Dark Data

Die IT-Experten können sich also über einen Mangel an Input nicht beschweren. Grundsätzlich bleibt eine aussagekräftige Analyse aber nach wie vor eine echte Mammutaufgabe. Ein Großteil dieses Informationsberges wird derzeit nicht ausgewertet, weil vielen Unternehmen die entscheidenden Lösungen fehlen. Wie wichtig die Lokalisierung der Daten ist, lässt sich schon an einer Kategorisierung veranschaulichen. Dazu lassen sich Daten in drei Gruppen unterteilen:

  • Geschäftskritische Daten – Hierbei handelt es sich um Daten, die offenkundig wichtig für den Betrieb und Unternehmenserfolg sind. Sie stellen dabei – entgegen der weitverbreiteten Meinung – nicht den Großteil des Datenvolumens dar. Sie werden aber am meisten genutzt, da sie sich leicht erheben und messen lassen. Laut dem Databerg-Report von Veritas Technologies sind sie mit 15 Prozent Anteil an der Gesamtdatenmenge vergleichsweise überschaubar.
  • ROT-Daten – ROT steht für Redundant, Obsolet, Trivial. Diese Daten stellen keinen Geschäftswert dar und sollten daher regelmäßig gelöscht werden. Hierzu zählen vor allem Spam, Werbung oder Phishing-Mails. Sie entsprechen ungefähr 19 Prozent in Deutschland, der europäische Schnitt liegt bei 32 Prozent.
  • Dark Data – Bei Dark Data handelt es sich nicht etwa um illegale Informationen, sondern um ungenutzte und unstrukturierte Daten, die in den Untiefen der Speicherplattformen schlummern. Ihr Wert ist noch nicht identifiziert, daher kann sich später herausstellen, dass unter ihnen sowohl geschäftskritische- als auch ROT-Dateien sind.

Dark Data ist überall

Dark Data sind demnach betriebliche Informationen, die an unterschiedlichen Stellen und Geräten anfallen. Sie werden entweder gar nicht oder nicht ausreichend betrieblich zielführend ausgewertet. Nehmen wir als Beispiel Log-Dateien von Servern. Sie werden in aller Regel angelegt und gespeichert um im Fall der Fälle Fehler des Servers analysieren und beheben zu können. Gleichzeitig werden sie auch eingesetzt, um die Wirksamkeit von Sicherheitsmaßnahmen checken zu können – also nachträglich zu prüfen, ob jemand Sicherheitsmaßnahmen austricksen konnte und unbefugt auf Daten zugegriffen hat.

Unstrukturierter Datenwust birgt Gefahren für Firmen

Diese dunklen Daten ließen sich aber auch für weitere betriebliche Zwecke auswerten. Unternehmen könnten zum Beispiel die Inhalte und Services ihrer Webseite auf Grundlage dieser Daten optimieren, wozu in der Praxis regelmäßig jedoch zusätzliche Tools eingesetzt werden, die unabhängig von den vorhandenen Daten eigene Datensilos anlegen und nutzen. Abseits von der wirtschaftlich effizientesten Nutzung von Daten müssen Unternehmen natürlich auch Risiken dieser Daten erkennen und minimieren. Dabei müssen diese Datenmassen zuerst vor unbefugtem Zugriff geschützt werden. Wenn sie für das eigene Unternehmen einen Wert haben könnten, dann werden sie schließlich auch für andere Unternehmen – in jedem Fall aber für spezialisierte kriminelle Organisationen – einen Wert darstellen. Einige Datensätze könnten brisante Informationen über die Organisation enthalten oder sogar gegen bestehende Compliance-Regeln verstoßen. Der Dieselgate-Skandal hat der ganzen Welt demonstriert, wie zuviel Unwissenheit über die eigenen Daten sogar einen Konzern ins Wanken bringen kann.

Achtung bei Personendaten

Wenn die Daten sich auf Personen beziehen, also beispielsweise Mitarbeiter oder Kunden, besteht über das eigene unternehmerische Risiko hinaus die Pflicht, diese Daten zu kontrollieren. Das heißt schon die Speicherung dieser Art von Daten sollte mit den entsprechenden Experten wie dem Datenschutzbeauftragten besprochen sein. Die tatsächliche Nutzung und Auswertung dieser Daten sollte ebenfalls in enger Abstimmung mit dem Datenschutz und auch mit den Mitbestimmungsgremien erfolgen, wie dem Betriebsrat. Denn unter Umständen führen die angefallenen Daten zu Informationen über Social Skills wie Teamfähigkeit oder kommunikative Kompetenzen von Mitarbeitern. Das Management wird durch die Einbindung aller Akteure in der Lage sein, eine ausgewogene datengetriebene HR-Strategie zu entwickeln, die sich auf die effiziente Nutzung der notwendigen Daten beschränkt.

Funzeln statt Flutlicht

Unternehmen aus Deutschland schneiden vor allem im Kostenvergleich zu den USA schlecht ab. Demnach wendet ein hiesiges Unternehmen pro 1.000 Terabyte an Daten jährlich 594.000 Euro auf, um triviale Daten zu verarbeiten, die irrelevant für das Geschäft sind. Langsam wird den Organisationen dieser Umstand aber bewusst, jedoch fehlt es häufig noch an einer ganzheitlichen Lösung, um die Datenmassen möglichst früh in werthaltige und wertlose Daten zu trennen.

Wie geht man vor?

Bisher haben die IT-Strategien auf zusätzliche Ressourcen wie Speichervolumen gesetzt, die immer schneller verarbeitet werden konnten. Doch es könnte der Zeitpunkt kommen, besser zwischen Nutzen und Risiko der anfallenden Daten unterscheiden zu müssen. Das Management kann dafür stärker auf Lösungen wie Enterprise Search setzen und flexible Information Governance-Strategien entwickeln, um die dunklen Daten transparent und messbar zu machen. Konkrete Anwendungen sind dabei FA-Tools in Kombination mit e-Discovery für eine spezifische Abtastung der dunklen Daten. Solche Dark Analytics müssen jedoch mit stringenten Definitionen genau auf das Firmenprofil zugeschnitten werden – sie sind Taschenlampen im Dunkeln, keine Flutlichter! Im Ergebnis wird nicht nur effizienter mit wertvollen Firmenressourcen umgegangen, sondern auch IT-Risiken aktiv kontrolliert.


Das könnte Sie auch interessieren:

Erfolgreiche KI-Projekte kombinieren das Domänenwissen von Prozessbeteiligten mit der Expertise von Datenanalysten und IT-Spezialistinnen. Da nicht jedes Maschinenbauunternehmen über diese drei wichtigen Kompetenzfelder verfügt, sind Kooperationen wichtige Bestandteile von KI-Projekten.‣ weiterlesen

Extreme Networks hat die Verfügbarkeit des Wi-Fi 6E Access Point bekanntgegeben. Als Wireless-Plattform erweitert der Zugangspunkt den Einsatzbereich auf das 6GHz-Frequenzband. Das Gerät wurde für Umgebungen mit hohen Anforderungen an Bandbreite und Nutzerdichte entwickelt und zeichnet sich Anbieterangaben zufolge durch seine Perfomance, Funktionalität und Sicherheit aus.‣ weiterlesen

Die Ersatzteilversorgung in der Automobilindustrie besitzt einen sehr kurzfristigen Charakter. Anwendungen zum Abbilden solcher Prozesse sind S/4Hana Supply Chain Management sowie S/4Hana-Automotive-Ersatzteilmanagement. Die wichtigen Zielgrößen für die Versorgungsqualität sind Lieferservicegrad und Time-to-Delivery.‣ weiterlesen

Im Cloud-Projekt Gaia-X entstehen Infrastruktur-Angebote, mit denen Hersteller digitale und vernetzte Produkte entwickeln können, ohne in Abhängigkeit zu Technologiekonzernen zu geraten. Die Strukturen dafür sind bereits etabliert. Jetzt ist es an den Produzenten, durch ihre Mitwirkung aus dem Projekt eine europäische Erfolgsgeschichte zu machen.‣ weiterlesen

Werma bietet ein neues Ruf- und Meldesystem zur Prozessoptimierung in Fertigung, Logistik und an manuellen Arbeitsplätzen an. Mit dem Andon WirelessSet lassen sich Probleme bei der Produktion per Knopfdruck melden, um die Behebung zu beschleunigen.‣ weiterlesen

Alle Werte einer Lieferkette im Blick zu behalten, ist eine Mammutaufgabe - können diese doch schnell in die Millionen gehen. Behälter mit benötigten Materialien müssen nicht mal verschwinden, schon der falsche Lagerplatz im Werk kann die Produktion ausbremsen. Tracker können dafür sorgen, dass nichts Wichtiges aus dem Blick gerät.‣ weiterlesen

Siemens und Zscaler arbeiten zusammen, um Kunden den sicheren Zugriff vom Arbeitsplatz im Büro oder mobil auf Operational-Technology(OT)-Systeme und -Anwendungen im Produktionsnetzwerk zu ermöglichen.‣ weiterlesen

Der österreichische Ableger von Bechtle hat Open Networks erworben. Die neuen Spezialisten bringen insbesondere Erfahrung in den Bereichen Application Services, Datacenter, Security und Netzwerk mit. Die Firma betreut rund 250 Kunden im Alpenstaat.‣ weiterlesen

Viele Konzepte etwa für Modern Workplaces und Digitalisierung hinterfragen Unternehmenskonzepte, die auf traditionelle Strukturen und Hierarchien setzen. Robert Lindner, Senior Regional Director & Country Manager Germany bei Red Hat, hat vier zentrale Grundsätze herausgearbeitet, wie sich Innovation befördern lässt, insbesondere als ein Unternehmen im Open-Sorce-Softwaremarkt.‣ weiterlesen

Panasonic hat sämtliche Unternehmensanteile des IT-Plattformanbieters Blue Yonder erworben. Der Kauf ist Teil der Konzern-Strategie, einzelne Geschäftsfelder zu stärken. Blue Yonder bewertet die Investition mit 8,5 Milliarden US-Dollar.‣ weiterlesen

Die Auftragsbücher im Maschinen- und Anlagenbau füllen sich, aber immer mehr Firmen verzeichnen Engpässe in ihren Lieferketten. Auch der Fachkräftemangel wird vermehrt zum Problem. Zu diesen Erkenntnissen kommt der VDMA nach einer seiner sogenannten Blitz-Umfragen.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige