Anzeige
Anzeige
Beitrag drucken

Bedienen und Beobachten

Höhere Flexibilität in der Anlagenüberwachung

Mit steigendem Marktdruck wächst auch die Komplexität der Automatisierung. Um Anlagen zu entwickeln, zu warten oder umzubauen, müssen Techniker, Systemingenieure und Anlagenbauer heute 'Alleskönner' sein. Um diese Situation auch in Zukunft beherrschen zu können, wird der Übergang in eine neue, intelligente Automation nötig.

Bild: CIIT

Zu Beginn der vierten, durch das Internet geprägten Revolution – auch als Industrie 4.0 bezeichnet – halten zunehmend Informations- und Kommunikationstechnologien (IKT) Einzug in die Automation. Beispiele dafür sind verbesserte Mensch-Maschine-Schnittstellen, eine stärkere Vernetzung und Assistenzfunktionen. Der gemeinsame Nenner ist die Verlagerung von menschlichem Expertenwissen in die Automation. Die Maschine übernimmt Aufgaben, die bislang Experten mittels komplexer Engineering-Werkzeuge manuell programmieren mussten. Das Institut für industrielle Informationstechnik (inIT) der Hochschule OWL sieht in der Human-Centered-Automation – einer Automation, die den Mensch in den Mittelpunkt rückt und die steigende Komplexität der Systeme für den Menschen beherrschbar macht – einen Ausweg aus dem Dilemma. Mittels intelligenter Assistenzsysteme in der Automation soll Komplexität beherrschbar werden, indem deren Wirkung auf den Menschen durch die Verwendung von entsprechenden Lösungen entschärft wird.

Engineering-Aufgaben für Automatisierer erleichtern

In der klassischen Automation modelliert ein Experte manuell das Wissen zum Lösungsweg mit Hilfe von Engineering-Werkzeugen. Das Wissen liegt prozedual vor, Intelligenz und Know-how liegen ausschließlich beim Menschen. Die Folge ist nicht nur ein hoher Engineering-Aufwand bei Inbetriebnahme und Anlagenanpassungen. Dieses Vorgehen zwingt den Automatisierer auch dazu, ein breites Wissen über die Anlage, die Produktionsziele, die IT und vor allem die Automatisierungstechnik zu besitzen. In Zeiten von Industrie 4.0 sollte die Automationslösung das Wissen zur Anlage genauso vorhalten wie Lösungswege für bekannte Probleme. Der Benutzer formuliert im Optimalfall lediglich Ziele wie Durchsatz, Energieverbrauch oder den gewünschten Umgang mit Verschleiß und Fehlern (Bild 3). Hierdurch kann sich der Aufwand in der Automation bei Inbetriebnahme und Anlagenumbau massiv verringern. Der Automatisierer kann sich damit verstärkt um seine Kernaufgabe, die Produktionsautomatisierung, kümmern. Intelligente Assistenzsysteme unterstützen ihn dann konkret bei der komplexen IT und den technischen Details der Automatisierungstechnik.



Beispiel für fie 3D-Visualisierung einer Anlage: Der Einsatz von AutomationML erleichtert das Erstellen mobiler Anwendungen. Bild: CIIT

Selbstständiges Erkennen von Anlagen-Störungen

Die Überwachung von komplexen vernetzten Anlagen stellt eine besondere Herausforderung dar. Betreiber haben mit einer Fülle von Daten zu tun, die sie interpretieren müssen. Zukünftig können selbstlernende Maschinen hierbei Hilfestellung leisten. Die Lemgoer Forscher des inIT entwickelten dazu einen Algorithmus, mit dem Produktionsanlagen selbständig lernen Störungen zu erkennen. Zur Anlagenüberwachung und Diagnose wurden bisher Regeln für das Normal- und Fehlverhalten manuell aufgestellt. Der Experte musste dabei alle Fehlermöglichkeiten vorhersehen und deren Auswirkungen auf die Sensordaten vorausdenken. Das bedeutet ebenfalls einen hohen Aufwand bei jedem Anlagenumbau. Hinzu kommt, dass Fehler auf diese Weise selten vorausgesehen werden können.

Was bisher nur manuell möglich war, kann die Maschine fortan übernehmen: Während des ablaufenden Produktionsprozesses lernt eine Software das ‚Normalverhalten‘ einer Maschine oder Anlage und speichert dieses als Modell ab. Möglich wird das mittels Methoden der Statistik. Im Fertigungsverlauf wird das erlernte Wissen mit Prozessdaten der laufenden Produktion verglichen. Bei einer Abweichung vom ‚Normalverhalten‘, wenn Vorhersage des Modells und Anlagenverhalten voneinander abweichen, schlägt ein Assistenzsystem Alarm und teilt diese Anomalie mit. Der Anlagenbediener muss anschließend lediglich die notwendigen Schritte einleiten, falls eine Störung vorliegt. Die manuelle Überwachung und Auswertung aller Daten entfällt. Die Anlage kann auf diese Weise durch das Filtern wichtiger Informationen den Blick des Betreibers auf Störungen lenken. Zusätzlich kann der Algorithmus ‚dazulernen‘: Handelt es sich bei einer Abweichung nicht um einen Fehler, kann der Nutzer das im Modell hinterlegen.


Das könnte Sie auch interessieren:

Die Pepperl+Fuchs-Marke Ecom hat auf der Hannover Messe 2019 neue Geräte für den Einsatz in explosionsgefährdeten Bereichen gezeigt. Dazu zählen das ATEX-Zone-1/21- und Div.-1-zertifizierte, eigensichere 4G/LTE-Android-Smartphone Smart-Ex 02, die eigensichere Thermal-Videokamera Cube 800 und die explosionsgeschützte Smart-Ex Watch für das Handgelenk.‣ weiterlesen

Am Freitagmittag, dem 7. Dezember 2018 berichtet Spiegel Online, dass KraussMaffei von einem schweren Cyberangriff durch eine Ransomware getroffen wurde. Welcher Produktionsverantwortliche denkt sich da nicht: 'Kann uns das auch passieren?' Mit dem passenden Mix verschiedener Maßnahmen können Werksleiter das Risiko wenigstens deutlich reduzieren.‣ weiterlesen

Wie können Zerspanungsunternehmen ihre Fertigung mit vertretbaren Kosten digitalisieren, ohne den Maschinenpark komplett modernisieren zu müssen? Mit dem neuen Konnektivitätsmodul c-Connect will die Ausgründung c-Com des Werkzeugspezialisten Mapal die Antwort darauf liefern.‣ weiterlesen

Von Lastsprognosen bis zur Qualitätskontrolle: Das Startup Boot.AI hat als IT-Dienstleister rund um KI-Projekte bereits einige Erfahrung in der produzierenden Industrie gesammelt. Um die neuronalen Netzwerke in den Projekten zu erstellen, lässt das Startup die GPUstarken Bare Metal Server der Open Telekom-Cloud für sich arbeiten.‣ weiterlesen

Meist ist mit dem digitalen Zwilling das 3D-Modell eines Produktes gemeint, das etwa um Mixed Reality-Lösungen für Instandhaltung und Service ergänzt wird. Was aber, wenn dieses Abbild die Sicht auf die verschiedenen Wertschöpfungsstufen und über Systemgrenzen hinweg beinhaltet?‣ weiterlesen

In der Phase der Konzeptentwicklung und -bestätigung werden für Prototypen und Prüfsysteme in der Regel elektronische Komponenten benötigt, die eigens für diesen einmaligen Einsatz entwickelt und hergestellt werden müssen. ARRK Engineering bietet ein System an, mit dem individuelle Lösungen nach dem Baukastenprinzip erstellt werden können.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige