Beitrag drucken

Bedienen und Beobachten

Höhere Flexibilität in der Anlagenüberwachung

Mit steigendem Marktdruck wächst auch die Komplexität der Automatisierung. Um Anlagen zu entwickeln, zu warten oder umzubauen, müssen Techniker, Systemingenieure und Anlagenbauer heute 'Alleskönner' sein. Um diese Situation auch in Zukunft beherrschen zu können, wird der Übergang in eine neue, intelligente Automation nötig.

Bild: CIIT

Zu Beginn der vierten, durch das Internet geprägten Revolution – auch als Industrie 4.0 bezeichnet – halten zunehmend Informations- und Kommunikationstechnologien (IKT) Einzug in die Automation. Beispiele dafür sind verbesserte Mensch-Maschine-Schnittstellen, eine stärkere Vernetzung und Assistenzfunktionen. Der gemeinsame Nenner ist die Verlagerung von menschlichem Expertenwissen in die Automation. Die Maschine übernimmt Aufgaben, die bislang Experten mittels komplexer Engineering-Werkzeuge manuell programmieren mussten. Das Institut für industrielle Informationstechnik (inIT) der Hochschule OWL sieht in der Human-Centered-Automation – einer Automation, die den Mensch in den Mittelpunkt rückt und die steigende Komplexität der Systeme für den Menschen beherrschbar macht – einen Ausweg aus dem Dilemma. Mittels intelligenter Assistenzsysteme in der Automation soll Komplexität beherrschbar werden, indem deren Wirkung auf den Menschen durch die Verwendung von entsprechenden Lösungen entschärft wird.

Engineering-Aufgaben für Automatisierer erleichtern

In der klassischen Automation modelliert ein Experte manuell das Wissen zum Lösungsweg mit Hilfe von Engineering-Werkzeugen. Das Wissen liegt prozedual vor, Intelligenz und Know-how liegen ausschließlich beim Menschen. Die Folge ist nicht nur ein hoher Engineering-Aufwand bei Inbetriebnahme und Anlagenanpassungen. Dieses Vorgehen zwingt den Automatisierer auch dazu, ein breites Wissen über die Anlage, die Produktionsziele, die IT und vor allem die Automatisierungstechnik zu besitzen. In Zeiten von Industrie 4.0 sollte die Automationslösung das Wissen zur Anlage genauso vorhalten wie Lösungswege für bekannte Probleme. Der Benutzer formuliert im Optimalfall lediglich Ziele wie Durchsatz, Energieverbrauch oder den gewünschten Umgang mit Verschleiß und Fehlern (Bild 3). Hierdurch kann sich der Aufwand in der Automation bei Inbetriebnahme und Anlagenumbau massiv verringern. Der Automatisierer kann sich damit verstärkt um seine Kernaufgabe, die Produktionsautomatisierung, kümmern. Intelligente Assistenzsysteme unterstützen ihn dann konkret bei der komplexen IT und den technischen Details der Automatisierungstechnik.



Beispiel für fie 3D-Visualisierung einer Anlage: Der Einsatz von AutomationML erleichtert das Erstellen mobiler Anwendungen. Bild: CIIT

Selbstständiges Erkennen von Anlagen-Störungen

Die Überwachung von komplexen vernetzten Anlagen stellt eine besondere Herausforderung dar. Betreiber haben mit einer Fülle von Daten zu tun, die sie interpretieren müssen. Zukünftig können selbstlernende Maschinen hierbei Hilfestellung leisten. Die Lemgoer Forscher des inIT entwickelten dazu einen Algorithmus, mit dem Produktionsanlagen selbständig lernen Störungen zu erkennen. Zur Anlagenüberwachung und Diagnose wurden bisher Regeln für das Normal- und Fehlverhalten manuell aufgestellt. Der Experte musste dabei alle Fehlermöglichkeiten vorhersehen und deren Auswirkungen auf die Sensordaten vorausdenken. Das bedeutet ebenfalls einen hohen Aufwand bei jedem Anlagenumbau. Hinzu kommt, dass Fehler auf diese Weise selten vorausgesehen werden können.

Was bisher nur manuell möglich war, kann die Maschine fortan übernehmen: Während des ablaufenden Produktionsprozesses lernt eine Software das ‚Normalverhalten‘ einer Maschine oder Anlage und speichert dieses als Modell ab. Möglich wird das mittels Methoden der Statistik. Im Fertigungsverlauf wird das erlernte Wissen mit Prozessdaten der laufenden Produktion verglichen. Bei einer Abweichung vom ‚Normalverhalten‘, wenn Vorhersage des Modells und Anlagenverhalten voneinander abweichen, schlägt ein Assistenzsystem Alarm und teilt diese Anomalie mit. Der Anlagenbediener muss anschließend lediglich die notwendigen Schritte einleiten, falls eine Störung vorliegt. Die manuelle Überwachung und Auswertung aller Daten entfällt. Die Anlage kann auf diese Weise durch das Filtern wichtiger Informationen den Blick des Betreibers auf Störungen lenken. Zusätzlich kann der Algorithmus ‚dazulernen‘: Handelt es sich bei einer Abweichung nicht um einen Fehler, kann der Nutzer das im Modell hinterlegen.


Das könnte Sie auch interessieren:

„In den kommenden Jahren wird durch Demografie, Digitalisierung und Klimaschutz der Bedarf an Beschäftigten in Ingenieur- und Informatikberufen deutlich zunehmen“, sagt VDI-Arbeitsmarktexperte Ingo Rauhut. Der Ingenieurmonitor für das zweite Quartal 2023 zeigt einen starken Engpass bei den Ingenieurberufen Energie- und Elektrotechnik.‣ weiterlesen

Eine Analyse der Softwarevergleichsplattform SoftGuide hat ergeben, dass in den meisten Fällen Unternehmensinhaber bzw. Vorstände zu neuer Software recherchieren. Die IT-Abteilung ist laut Analyse seltener involviert.‣ weiterlesen

B&R zieht um. Das Unternehmen verlegt den Hauptsitz nach Friedberg zum Deutschland-Sitz der Robotics-Division von ABB. Wie B&R mitteilt, sollen so stärkere Synergien geschaffen werden.‣ weiterlesen

Mit der ME Industrial Simulation Software Corporation geht ein Joint Venture von Mitsubishi Electric und Visual Components an den Start, das sich der Entwicklung sowie dem Vertrieb von 3D-Simulatoren widmen soll.‣ weiterlesen