Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Neue Geschäftsmodelle entwickeln

Wenn das ERP-System mitdenkt

Maschinelles Lernen, intelligente Algorithmen, neuronale Netze – die Weiterentwicklung der künstlichen Intelligenz vollzieht derzeit große Sprünge. Während trotz alledem die Vision vom vollständig autonomen Auto oder einer echten Konversation mit einem Sprachassistenten bislang Utopie bleibt, wird die neue Technologie schon bald Einzug in die Geschäftsprozesse von Unternehmen halten. Im Zentrum stehen dabei völlig neue Geschäftsmodelle auf Basis intelligenter Analysen.

(Bild: ©ekkasit919 / Fotolia.com)

(Bild: ©ekkasit919 / Fotolia.com)

Sei es beim Diagnostizieren von Krankheitsbildern oder bei einer Runde des Spiels ‚Go‘ – in ausgewählten Spezialbereichen ist künstliche Intelligenz bereits heute dem menschlichen Gehirn überlegen. Zumindest bislang beschränken sich die Fähigkeiten der entsprechenden Algorithmen jedoch weitestgehend auf die Erkennung von Mustern. Echte Kausalzusammenhänge können von der Technik bislang nicht verstanden werden. Experten prognostizieren jedoch, dass die Technologie schon bis 2030 einem erwachsenen menschlichen Gehirn nahezu äquivalent sein könnte.

Neue Möglichkeiten für ERP-Systeme

Fortschritte wie diese eröffnen auch dem Enterprise Resource Planning neue Szenarien – Herstellern entsprechender Systeme werden neue Möglichkeiten geboten, künstliche Intelligenz in ihre Systeme zu integrieren – eine Entwicklung, die sich bereits in naher Zukunft mit konkreten Anwendungen in der Praxis etablieren wird. So könnten intelligente ERP-Systeme u.a. die neuen Möglichkeiten, Texte zu verstehen und menschliche Sprache zu interpretieren, dazu nutzen, Mitarbeiter von Routineaufgaben zu entlasten. Im Vertrieb beispielsweise könnte die künstliche Intelligenz bei der Vorbereitung auf einen Kundentermin unterstützen. Das System übernähme die Aufgabe, alle öffentlich zugänglichen Informationen zu dem Unternehmen wie Pressetexte, Handelsregistereinträge oder auch Social-Media-Beiträge zu sammeln, zu analysieren und zu interpretieren, um so ein umfassendes Gesamtbild des Unternehmens aufzubereiten und als übersichtliche Zusammenfassung darzustellen.

Den Kunden besser kennenlernen

Im zweiten Schritt ließen sich auf diese Weise auch Informationen mit weiteren Daten aus dem ERP-System zusammenbringen und beispielsweise die bisherigen Kontakte mit einem Kunden oder Interessenten in Form von E-Mails oder vergangenen Bestellungen analysieren. Auf deren Basis wäre die künstliche Intelligenz in der Lage, die Wahrscheinlichkeit einzuschätzen, dass ein bestimmtes Angebot an einen bestimmten Kunden auf Interesse stößt und zum Vertragsabschluss führt. Eine solche ‚Predictive Sales‘-Analyse gäbe den Mitarbeitern einen Anhaltspunkt, auf welche Interessenten sie ihre Bemühungen hauptsächlich fokussieren sollten, und welche Fälle unter Umständen eher mit geringerer Priorität verfolgt werden können. Vorhandene Ressourcen lassen sich dann entsprechend effektiver kanalisieren sowie der Vertriebserfolg im Ganzen erhöhen.

Potenziale für die Smart Factory

Über die Arbeitsentlastung im Geschäftsalltag hinaus, birgt die Kombination von ERP und KI auch im Bereich der smarten Fabrik ein hohes Potenzial. Besonders Hersteller, die bereits in Form von Maschinenanbindung oder Predictive Maintenance erste smarte Szenarien mit ihren Maschinen realisiert haben, befinden sich dafür in einer guten Ausgangslage. Sie verfügen unter Umständen bereits über Datenreservoirs, die im Zeitverlauf durch die Erfassung der Betriebsdaten ihrer Maschinen beim Kunden vor Ort entstanden sind – und mit denen die KI-Anwendung gefüttert werden könnte. Ein hochwertiger Datensatz bildet in jedem Fall die Grundlage für eine erfolgreiche KI-Analyse. Je besser und umfangreicher, desto aussagekräftiger und verlässlicher ihre Ergebnisse.

Datensätze kombinieren

Konkret ließen sich beispielsweise die Datensätze unterschiedlicher Kunden anonymisiert zu Analysezwecken kombinieren. Auf diese Weise könnten unter Umständen Korrelationen darüber erkannt werden, wie bestimmte Voraussetzungen die Produktivität einer Anlage beeinflussen. Beispiele hierfür wären etwa das Zusammenspiel von auf den ersten Blick unzusammenhängenden Konfigurationsparametern oder der Einfluss externer Umweltfaktoren wie Luftfeuchtigkeit oder Umgebungstemperatur. Der Grund, weshalb ein bestimmter Faktor Auswirkungen auf den Output hat, ist dabei im ersten Schritt irrelevant. Was zählt, ist die Entdeckung des Zusammenhangs. Die gewonnenen Erkenntnisse könnten schließlich als Beratungsdienstleistung an den Kunden weitergegeben werden – und damit das bisherige Geschäftsmodell durch einen entsprechenden Service erweitert werden.

Nur so gut, wie die Datenbasis

Wissenschaftler wie Unternehmen bringen die Forschungen zur künstlichen Intelligenz derzeit mit immer neuen Ansätzen weiter voran. Und auch wenn die Technologie noch einige Jahre benötigen dürfte, bevor sich Menschen tatsächlich flüssig mit Maschinen unterhalten können und Autos vollkommen selbstständig ihren Weg durch die Stadt finden, wird die Unterstützung durch KI im Geschäftskontext schon bald Realität sein. Neben der Entlastung von Mitarbeitern von zeitraubender Routine eröffnen sich Unternehmen dabei auch vollkommen neue Möglichkeiten zur Erweiterung ihres Geschäftsmodells. Wichtig für den Erfolg dabei ist, sich bereits im Vorfeld über die Zielsetzung der KI-Anwendung im Klaren zu sein. Entscheidend dabei ist die Datenqualität: Denn unabhängig von der Technologie kann künstliche Intelligenz immer nur so gut sein, wie ihre zugrundeliegende Datenbasis.


Christian Leopoldseder ist Managing Director Austria bei der Asseco Solutions AG.Christian Leopoldseder ist Managing Director Austria bei der Asseco Solutions AG.


Das könnte Sie auch interessieren:

Mixaco stellt Industriemischer für Chemikalien, Farben und Kunststoffe her. Jetzt hat die Firma ihr Angebot um eine IoT-Lösung erweitert, mit der Anlagenbetreiber die Leistung ihrer Maschinen online überwachen und sie vorausschauend warten können. In Verbindung mit anderen Bausteinen der IoT-Plattform sind aber noch viel mehr Anwendungen möglich.‣ weiterlesen

Im 23. Global CEO Survey von PWC rechnet mehr als die Hälfte der 1.581 befragten CEOs mit einem Rückgang des Weltwirtschaftswachstums. Auf lange Sicht zeigen sich die Befragten jedoch optimistischer.‣ weiterlesen

Weit mehr als 200 Aussteller auf werden auf der All About Automation im am 4. und 5. März am Bodensee erwartet. Bei der aktuellen Auflage sind die Themen Robotik und MRK zunehmend stark vertreten.‣ weiterlesen

Trendthemen wie künstliche Intelligenz oder Nachhaltigkeit haben Auswirkungen auf die gesamte Supply Chain. Auf der diesjährigen Logimat, die vom 10. bis zum 12. März in Stuttgart stattfindet, zeigen mehr als 1.650 Aussteller, wo die Reise in der Intralogistik in den nächsten Jahren hingehen könnte.‣ weiterlesen

Mit der Übernahme der Data One GmbH will Orbis das eigene SAP- und Microsoft- Beratungsangebot stärken.‣ weiterlesen

Ein neuer Trend in der Marketing-Kommunikation ist die KI-gestützte Stimmungsanalyse der Gesprächspartner: Sentimentanalysen in Verbindung mit Spracherkennung wie bei Amazons Alexa, IBM Watson, oder Google Speech API geben viele neue Aufschlüsse über Kundenverhalten. Im Beitrag geht es um die Nutzung dieser Techniken für das Verkaufsgespräch.‣ weiterlesen

In einer aktuellen Studie hat das Wirtschaftprüfungs- und Beratungsunternehmen Deloitte weltweit mehr als 2000 C-Level-Führungskräfte zum Thema Industrie 4.0 befragt, 125 davon aus Deutschland. Die Analyse zeigt, dass für die Unternehmen neben Wertschöpfung und Wachstum zunehmend auch Nachhaltigkeit und soziale Verantwortung an Bedeutung gewinnen.‣ weiterlesen

Für 30 Prozent organisches Wachstum muss in einem Unternehmen einiges richtig laufen. Vor allem wenn das Ergebnis im umkämpften ERP-Markt erzielt wird. Softwareanbieter IFS hat genau das geschafft. Wir haben mit Europachef Glenn Arnesen über das Erfolgsrezept der Firma gesprochen.‣ weiterlesen

Bosch Rexroth hat mit ActiveCockpit eine interaktive Kommunikationsplattform im Portfolio, die Fertigungsdaten in Echtzeit aus verschiedenen Systemen und Datenquellen verarbeitet und visualisiert. Der Einsatz bei Bosch Thermotechnik in Wetzlar zeigt, dass die Lösung Transparenz in die Lagerlogistik bringen kann.‣ weiterlesen

Anzeige
Anzeige
Anzeige