Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Wiederbeschaffungszeiten KI-basiert berechnen

Lieferungen landen nach Plan

Liebherr Aerospace setzt zur Produktionsplanung auf die Software Felios mit ihrem Machine-Learning-Modul. Im Vergleich zu früher fallen die Prognosen der Wiederbeschaffungszeit von Bauteilen bis zu 19-mal genauer aus.

 (Bild: ©iwikoz6/Gettyimages.de)

(Bild: ©iwikoz6/Gettyimages.de)

Bei Liebherr-Aerospace arbeiten an den Standorten in Lindenberg und Friedrichshafen rund 5.000 Mitarbeiter. Das zum Liebherr-Konzern gehörende Unternehmen entwickelt, fertigt und betreut Luftmanagement-, Flugsteuerungs- und Betätigungssysteme, Fahrwerke sowie Getriebe und Elektronik. Optimierungsbedarf sah das Unternehmen bei der Planung seiner Wiederbeschaffungszeiten (WBZ) von Bauteilen für die rund 300.000 Artikel aus dem Angebotsspektrum. Die zuvor im ERP-System abgebildeten statischen Planungsdaten aus dem Materialstamm waren zu ungenau. „Die Schätzungen und die Ist-Werte für Lieferdauern sind bei uns – wie bei vielen anderen Unternehmen – nur selten identisch. Abweichungen zwischen kalkulierten und realen Zeiten führen zu einer niedrigen Maschinenauslastung, wenn die Materialien zu spät eintreffen“, erläutert Sebastian Ullmann, Leiter Organisation Produktionsplanung bei Liebherr-Aerospace Lindenberg. „Erfolgen die Lieferungen zu früh, hat das negative Auswirkungen, denn das verfügbare Kapital nimmt durch hohe Bestände ab. Wir wollten daher die Genauigkeit unserer Prozessplanung durch präzisere Prognosen der WBZ und der damit verbundenen Bestelltermine verbessern.“ Da das Unternehmen bereits in anderen Projekten mit dem Softwareanbieter Inform zusammengearbeitet hatte, sollte das Aachener IT-Haus auch bei diesem Problem unterstützen.

In Zusammenarbeit erstellt

Seit mehr als fünf Jahren betreibt Liebherr bereits die Produktionsplanungssoftware Felios. Zum Einsatz kommen Module für die Fertigungssteuerung, das strategische Engpassmanagement, die Schichtplanung, zur Kennzahlenerhebung und -visualisierung sowie für die Betriebs- und Maschinendatenerfassung. Jetzt ist das Modul für maschinelles Lernen hinzugekommen. Entwickelt wurde es unter Mitwirkung von Liebherr-Aerospace von Inform DataLab, einem eigenständigen Kompetenzbereich des Unternehmens mit dem Fokus auf Data Management, Data Analytics und Data Science. „Das Modul ist vollständig in Felios integriert“, sagt Jens Siebertz, Vice President bei Inform DataLab. „Mithilfe spezieller ML-Algorithmen kann nun auf Grundlage der vorhandenen Daten präzise vorhergesagt werden, wie lange die Lieferung eines benötigten Bauteils tatsächlich dauert.“ Durch eine Datenvalisierung hat sich gezeigt, dass die Differenz zwischen dem Planwert und dem Ist-Wert für das Lieferdatum bei fünf Tagen lag. Das mit Machine Learning errechnete Prognosedatum zeigte eine Abweichung von nur einem Tag. Anschließend erfolgte eine vierwöchige Datenvalidierung im Testbetrieb. Ausgewählt wurden Lieferanten, die große Mengen an Bauteilen regelmäßig liefern. „Wir waren mit der ML-Prognose der Wiederbeschaffungszeiten 19-mal genauer als mit der Prognose aus dem Artikelstamm“, so Ullmann.

Frühwarnsystem

Abgebildet werden die Daten in einem Dashboard, das als Frühwarnsystem fungiert: Der Einkaufsleiter kann für einen definierten Zeitraum geplante Bestellungen mit Felios prüfen lassen. Zeigen sich in der Prognose der Lieferdaten zu hohe Abweichungen gegenüber den Werten aus dem ERP-System, kann er dem zuständigen Sachbearbeiter über das Dashboard automatisiert ein Dokument mit Informationen zu dieser Bestellung per E-Mail zusenden, damit er den Lieferanten kontaktiert, um den Bestellstatus zu überprüfen.


Das könnte Sie auch interessieren:

Der Maschinenbauer Manz bündelt unter dem Namen Total Fab Solutions sein Angebot für die Automatisierung von Fertigungslinien. Im Paket abgedeckt sind Umsetzungsschritte von Automatisierungsprojekten von der Fabrikplanung über die Prozess- und Materialflusssimulation oder die Integration bestehender Fertigungsprozesse bis hin zu Aufbau, Hochfahren und Optimierung schlüsselfertig zu übergebender Produktionslösungen.‣ weiterlesen

Beim traditionellen Qualitätsmanagement werden gefertigte Bauteile analysiert, um die Qualität der nächsten zu verbessern. Beim Predictive Quality-Ansatz wollen Hersteller analysegestützt eine höhere Qualität erzielen, ohne in die Vergangenheit schauen zu müssen. Bereits verfügbare Lösungen für den Ansatz integrieren die erforderlichen Daten auf einer MES-Plattform.‣ weiterlesen

Der Aufbau einer kabelgebundenen Ortungsinfrastruktur auf großen Flächen wie Lagerhallen, Baustellen oder in der Prozessindustrie ist kostspielig und zeitaufwendig.‣ weiterlesen

KI-getriebene Convolutional Neuronal Networks in selbstfahrenden Autos sollen andere Verkehrsteilnehmer erkennen. Dabei gilt: Je selbstständiger das Auto, desto komplexer der Algorithmus und undurchschaubarer dessen Weg zur getroffenen Entscheidung. Ein Validierungs-Tool soll helfen, diesen besser zu verstehen.‣ weiterlesen

Erfolgreiche KI-Projekte kombinieren das Domänenwissen von Prozessbeteiligten mit der Expertise von Datenanalysten und IT-Spezialistinnen. Da nicht jedes Maschinenbauunternehmen über diese drei wichtigen Kompetenzfelder verfügt, sind Kooperationen wichtige Bestandteile von KI-Projekten.‣ weiterlesen

Extreme Networks hat die Verfügbarkeit des Wi-Fi 6E Access Point bekanntgegeben. Als Wireless-Plattform erweitert der Zugangspunkt den Einsatzbereich auf das 6GHz-Frequenzband. Das Gerät wurde für Umgebungen mit hohen Anforderungen an Bandbreite und Nutzerdichte entwickelt und zeichnet sich Anbieterangaben zufolge durch seine Perfomance, Funktionalität und Sicherheit aus.‣ weiterlesen

Die Ersatzteilversorgung in der Automobilindustrie besitzt einen sehr kurzfristigen Charakter. Anwendungen zum Abbilden solcher Prozesse sind S/4Hana Supply Chain Management sowie S/4Hana-Automotive-Ersatzteilmanagement. Die wichtigen Zielgrößen für die Versorgungsqualität sind Lieferservicegrad und Time-to-Delivery.‣ weiterlesen

Im Cloud-Projekt Gaia-X entstehen Infrastruktur-Angebote, mit denen Hersteller digitale und vernetzte Produkte entwickeln können, ohne in Abhängigkeit zu Technologiekonzernen zu geraten. Die Strukturen dafür sind bereits etabliert. Jetzt ist es an den Produzenten, durch ihre Mitwirkung aus dem Projekt eine europäische Erfolgsgeschichte zu machen.‣ weiterlesen

Werma bietet ein neues Ruf- und Meldesystem zur Prozessoptimierung in Fertigung, Logistik und an manuellen Arbeitsplätzen an. Mit dem Andon WirelessSet lassen sich Probleme bei der Produktion per Knopfdruck melden, um die Behebung zu beschleunigen.‣ weiterlesen

Alle Werte einer Lieferkette im Blick zu behalten, ist eine Mammutaufgabe - können diese doch schnell in die Millionen gehen. Behälter mit benötigten Materialien müssen nicht mal verschwinden, schon der falsche Lagerplatz im Werk kann die Produktion ausbremsen. Tracker können dafür sorgen, dass nichts Wichtiges aus dem Blick gerät.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige