Anzeige
Anzeige
Beitrag drucken

KI in der Logistik

Mit Machine Learning präzise Vorhersagen treffen

Immer häufiger wird Machine Learning als Analyse- und Steuerungsinstrument auch in der Logistik eingesetzt. Ein Beispiel dafür ist die Verknüpfung des Microsoft Azure Machine Learning Studios mit Bestandsmanagement- oder ERP-Systemen. Damit lassen sich unter anderem Bestände, Bestellungen und Lagerprozesse optimieren.

 (Bild: ©PhonlamaiPhoto/istockphoto.com)

(Bild: ©PhonlamaiPhoto/istockphoto.com)

Viele Unternehmen haben das Potenzial von Machine Learning in selbstlernenden Systemen erkennt. Dabei erkennen Algorithmen Muster und Gesetzmäßigkeiten in großen Datenmengen. Mit neuronalen Netzen lassen sich aus den Datenbeständen Rückschlüsse ziehen und Prognosen treffen. In Zeiten von Big Data und Cloud-Plattformen bilden die mittlerweile enormen Rechenkapazitäten eine gute Grundlage, um intelligente Anwendungen wie Machine-Learning-Systeme, zu entwickeln. Dabei lernt eine Software, indem sie selbstständig neues Wissen generiert – ohne explizite Programmierung. Zum Einsatz kommen Algorithmen, die komplexe Zusammenhänge zwischen den vorhandenen Daten verstehen, Muster erkennen und daraus nach einer Lernphase allgemeingültige Modelle ableiten. Ob der Algorithmus zuverlässige Ergebnisse liefert, hängt dabei allerdings wesentlich von dem Umfang und der Qualität der zur Verfügung stehenden Daten ab.

Ein exaktes Modell entsteht

Auch die Sievers-Group setzt bei Kundenprojekten zunehmend auf Machine Learning, um Informationen zu interpretieren, präzisere Vorhersagen zu treffen und dadurch insgesamt Prozesse zu optimieren. „Wir nutzen die Cloud-Lösung Microsoft Azure Machine Learning Studio“, erklärt Hendrik Ohlms, Teamleiter Vertrieb Business Solutions ERP bei der Firma. „Zunächst greifen wir damit auf die vorhandenen Datenmengen zu, bereiten diese auf, analysieren sie und stellen den Kunden schließlich die Ergebnisse zur Verfügung.“ Das Machine-Learning-System identifiziert dabei auf der Basis von neuronalen Netzen wiederkehrende Muster, Gesetzmäßigkeiten oder Anomalien. Dabei nutzt die Sievers-Group das sogenannte überwachte Lernen. Das System zieht beispielsweise 60 Prozent der verfügbaren Daten heran, um Zusammenhänge zu erkennen und daraus zu lernen. Anhand der restlichen 40 Prozent der Daten prüft die Software, mit welcher Wahrscheinlichkeit die aus der Lernphase ermittelten Ergebnisse zutreffen. Der Trainingsprozess dauert im Idealfall so lange, bis alle Beispiele richtig berechnet werden. So nutzt der Algorithmus die Daten, um sein erstelltes Modell ständig anzupassen und zu verfeinern. Je mehr Daten zur Verfügung stehen, desto genauer wird das Modell. Stimmt es größtenteils mit der Realität überein, können zunehmend präzise Aussagen oder Handlungsempfehlungen getroffen werden. Im Ergebnis ermöglicht Machine Learning Anwendern, durch die Analyse großer Datenmengen realistische Prognosen zu treffen und geeignete Maßnahmen abzuleiten.

Vielfältige Anwendungen

Durch die Verbindung der Cloud-Computing-Plattform Microsoft Azure Machine Learning Studio mit Lagerverwaltungs- oder ERP-Systemen erschließt der IT-Dienstleister Anwendungsmöglichkeiten des Machine Learning. Mit der künstlichen Intelligenz lassen sich beispielsweise Retouren verringern, Bestände optimieren oder ganze Lagerprozesse automatisieren. Da durch Machine Learning Absatzkurven prognostiziert werden können, weiß der Anwender ziemlich genau, zu welchem Zeitpunkt welche Artikel bestellt werden sollten und, ob beispielsweise eine Abhängigkeit vom Wetter oder von saisonalen Gegebenheiten sowie weiteren Einflussfaktoren besteht. Auch kann Machine Learning zur Bestelloptimierung genutzt werden. Aus der Analyse von Verkaufsaufträgen berechnet und prognostiziert die Software, wann welcher Kunde welche Artikel bestellen wird. Somit können Abläufe im Verkaufs- und Bestellwesen automatisiert werden. Muss ein Unternehmen jeden Tag eine gewisse Anzahl von Bestellungen mit einer bestimmten Artikelkombination zusammenstellen, kann es sich außerdem lohnen, diese Artikel vorzukommissionieren.

ANZEIGE


Das könnte Sie auch interessieren:

Die Eclipse Foundation präsentiert in ihrem ’IoT & Edge Developer Survey 2022‘ Entwicklertrends mit Schwerpunkt auf Edge Computing, KI und Sicherheit. Die Ergebnisse sollen Aufschluss über die Nutzung von Plattformen, Bedenken von Entwicklern, Zielmärkte und mehr geben.‣ weiterlesen

Der digitale Zwilling zählt für viele zu einem Kernelement der industriellen Digitalisierung, obwohl solche Integrationen oft noch sehr komplex sind. Für eine schrittweise Einführung gilt es, die unterschiedlichen Ausprägungsformen des digitalen Zwillings zu verstehen.‣ weiterlesen

Mit Andreas Montag und Nikas Schröder hat der ERP-Spezialist AMS.Solution zwei neue Vorstandsmitglieder. Zudem wird Simone Schiffgens neue Vorstandsvorsitzende und folgt auf Manfred Deues, der in den Aufsichtsrat wechselt.‣ weiterlesen

Björn Goerke verstärkt die Führungsetage beim ERP-Anbieter ProAlpha. Als Chief Technology Officer soll er die weitere Transformation des Unternehmens in die Cloud-Ära gestalten.‣ weiterlesen

Mehr Netzwerkausfälle und längere Wiederherstellungszeit: Davon berichten CIOs und Netzwerktechniker in einer Befragung des Netzwerkspezialisten Opengear. Demnach liegt die durchschnittliche Downtime um 2 Stunden höher als 2020.‣ weiterlesen

Wie können oft verwässerte ESG-Berichte der Vergangenheit angehören? Während sich auf politischer Ebene in puncto nachhaltiges Wirtschaften einiges bewegt, kann insbesondere die technologische Seite einen Beitrag zu einer transparenteren Produktion leisten. Den Grundgedanken der Industrie 4.0 zu implementieren, ist dabei ein wichtiger Schritt.‣ weiterlesen

Mit 100,4 Punkten liegt das IAB-Arbeitsmarktbarometer auf dem tiefsten Stand seit 2020 und somit noch knapp über der neutralen Marke. Demnach sendet der Frühindikator noch leicht positive Signale.‣ weiterlesen

Die Senkung der Betriebskosten ist ein Trend bei IIoT-Installationen, was auch als Zeichen einer reifen Branche zu verstehen ist. Dabei stellen Betreiber schon bei der Architektur-Planung sicher, keine unnötigen Kostentreiber einzurichten. Das bedeutet auch, Lösungen auch mal ohne das beliebte MQTT-Protokoll durchzudenken.‣ weiterlesen

Ein Abrasivwasserstrahl bearbeitet Bauteile effektiv und fast verschleißfrei. Doch die komplexe Prozessführung und -steuerung verhinderte bislang den Durchbruch dieser Technologie in der Fertigung. Am Fraunhofer IPT entstanden jetzt ein neuer Wasserstrahlkopf und eine Software, um diese Fertigungstechnik besser und zugänglicher zu machen.‣ weiterlesen