Anzeige
Anzeige
Anzeige
Beitrag drucken

Hyperpersonalisiertes Marketing

Kundendaten bündeln und KI-gestützt analysieren

Die Angebote von Firmen lassen sich so leicht wie nie zuvor miteinander vergleichen. Wenn sich Hersteller nur begrenzt über Preis oder Qualität vom Wettbewerb abheben können, wird die Kundenbindung eine wichtige Kenngröße. Dabei hilft hyperpersonalisiertes Marketing, indem es Käufern im richtigen Moment benötigte Informationen und Angebote ausspielt.

(Bild: ©auremar/stock.adobe.com)

(Bild: ©auremar/stock.adobe.com)

Der Ansatz des hyperpersonalisierten Marketings kann als weiterentwickelte Form des personalisierten Marketings verstanden werden. Während hier jedoch meist lediglich erfasste Daten verarbeitet werden, geht es heute mehr darum, mittels künstlicher Intelligenz (KI) und in der Gesamtmenge an Daten innewohnende Muster und Zusammenhänge zu erkennen. Auf dieser Grundlage ist es möglich für Kunden individuelle Marketingaktionen und Angebote zu erstellen, die auf deren Interessen und Bedürfnissen zu diesem Zeitpunkt zugeschnitten sind. Die Datenanalyse ist umso aussagekräftiger, je mehr relevante Daten in die Auswertung einfließen. Sie sind in den Firmen auch reichlich vorhanden, oft isoliert in Form von unterschiedlichen Datensilos in den einzelnen Abteilungen – und lassen sich nur schwer miteinander verbinden und analysieren.

Weitreichend personalisiert

Kunden mit personalisierten E-Mails anzusprechen, ist mittlerweile auch im B2B-Sektor Standard. Immer mehr Unternehmenskunden erwarten von ihren Lieferanten und Dienstleistern sowohl individuelle, auf ihre spezifischen Belange zugeschnittene Informationen und Angebote als auch eine Multi-Channel-Kommunikation. Nur die Adress- und Namensdatenbank sowie Kauf- und Suchhistorien auszuwerten, stößt da schnell an Grenzen. Ein hyperpersonalisiertes Marketing könnte beispielsweise so ablaufen: Nachdem ein Unternehmen neue Rechentechnik gekauft und installiert hat, erhalten seine Mitarbeiter vom Lieferanten zusätzliche, individualisierte Informationen, etwa zu Schulungsangeboten, Upgrades oder Anwenderstatistiken – je nach persönlichem Bedarf und auf verschiedenen Wegen: von E-Mails über Social Advertising bis hin zu Pop-ups.

In den Kunden hineinblicken

Mit automatisiertem One-to-one-Marketing wollen Unternehmen etwa Streuverluste reduzieren, die Konversionsrate oder die Anzahl der Kaufabschlüsse steigern sowie das Up- und Cross-Selling intensivieren. Laut einer Studie des US-Unternehmens Epsilon kaufen vier von fünf Verbrauchern eher etwas, wenn ihnen der Anbieter personalisierte Angebote unterbreitet. Hinzu kommt, dass sich Käufer nachweislich enger an einen Anbieter oder eine Marke binden, wenn ihnen das Unternehmen vermittelt, sie zu kennen und ihre Wünsche in den Fokus zu stellen. Kanalübergreifende Interaktionen zwischen Anbieter und Kunden entlang der gesamten Customer Journey sind dabei sehr hilfreich. Grad und Qualität der Hyperpersonalisierung werden umso höher, je mehr relevante Daten in die Analyse einfließen. Im Endkundengeschäft sind dazu in einigen Unternehmen schon entsprechende KI-basierte Systeme implementiert. Onlineshops werten etwa verfügbare, maßgebliche Daten aus, um Kunden und Interessenten mit jeweils einzigartigen Angeboten zu locken. Dazu gehören Merk- und Wunschlisten, Informationen zu Retouren oder Kaufabbrüchen sowie zum Bestell- und Zahlungsverhalten des Käufers. Auch die Vergabe von Likes oder Kaufempfehlungen finden Beachtung – sowohl bei der Auswertung historischer Daten als auch in Form einer Empfehlung unmittelbar nach dem Klicken.

Customer Data Platforms

Eine der größten Hürden auf dem Weg zum hyperpersonalisierten Marketing im B2B-Segment ist die heterogene Datenbasis in den meisten Unternehmen. Die Daten und Informationen befinden sich verstreut als sogenannte Datensilos an mehreren Stellen im Unternehmen. Zum Teil wissen die einzelnen Abteilungen gar nicht, welche Daten neben ihren eigenen noch existieren. Hier setzen sogenannte Customer Data Platforms an, die Daten aus den verschiedenen Systemen zusammenführen, verknüpfen und anreichern. KI-gestützt lassen sich etwa in den Kundeninteraktionen und Nutzungsdaten Muster identifizieren, um neue Erkenntnisse zu gewinnen. Das führt bis hin zu einer sehr treffsicheren Vorhersage des künftigen Kundenverhaltens, um so beispielsweise abwanderungsbereite Kunden zu ermitteln und rechtzeitig Gegenmaßnahmen zu ergreifen. Die Daten dienen dazu, Segmente zu erstellen, um die Kunden gezielter – sprich hyperpersonalisiert – anzusprechen und relevante Produkte und Services zu empfehlen.

Grundsätzliche Überlegungen

Um auf ein hyperpersonalisiertes Marketing umzustellen, sind einige grundsätzliche Entscheidungen zu treffen:

  • • Den Anfang bildet eine Bestandsaufnahme: Welche Datensilos liegen im Unternehmen vor? Welche Daten sind relevant? Wie ist ihre Qualität?
  • • Anschließend sind die KPIs zu definieren, die dem Marketing als Orientierung dienen. Dazu gehört es auch festzulegen, auf welchem Weg/in welcher Form die KPIs zum Einsatz kommen. Dabei kann es sich beispielsweis um Schwellenwerte handeln, die unterschiedliche Aktionen auslösen.
  • • Zudem sollte geprüft werden, ob oder wie sich KI vorteilhaft beim Bilden von Segmenten einsetzen lässt, die man persönlicher ansprechen möchte. Denn während sich beispielsweise in einem CRM die Segmente meist nur anhand historischer bzw. demografischer Daten erstellen lassen, kann KI dafür auch die entdeckten Muster als Basis nutzen.
  • • Schließlich müssen Unternehmen festlegen, wer ermittelte Erkenntnisse wie nutzen soll und wie sie zur Verfügung gestellt werden sollen. Sind etwa Vertrieb und Service viel vor Ort beim Kunden, benötigen sie die Informationen auf ihren mobilen Endgeräten. Für das Marketing-Team hingegen ist es sinnvoll, sie automatisiert in die Vertriebssoftware einzuspielen.

Mögliches Szenario

Eine mögliche Anwendung des Ansatzes liefert das fiktive Beispiel, bei dem ein aktuell inaktiver Kunden im Unternehmen anruft: Der Vertriebsmitarbeiter hebt ab und öffnet eine App, die ihm Details zum Anrufer, einschließlich Berufsbezeichnung, Firmenname, Standort, Kommunikationspräferenz und Net Promoter Score anzeigt. Das Modul Microsoft Dynamics 365 Customer Insights stellt darüber hinaus alle aktuellen Projekte dar. Darunter sind die jüngsten Aktivitäten zu sehen, einschließlich Website-Besuche, E-Mails, Telefonanrufe, Social Feed und Meetings. In der Unternehmensansicht sind alle Aufträge der Firma aufgeführt – bei Bedarf mit Details wie Projektname, Praxisbereich, Gesamtbudget, Prozentsatz der Fertigstellung, bisherige Kosten und Wertmarge. So kann der Account Manager die Gelegenheit nutzen, um nachzufassen, falls Projekte gefährdet sind. Als Top-Vertriebler lässt er sich zudem anzeigen, wie sich die Kundenzufriedenheit im Laufe der Zeit entwickelt hat, um dann darauf im Gespräch einzugehen. Dem Anrufer vermittelt er damit, dass dieser im Zentrum aller Aktivitäten steht und man sich um seine Bedürfnisse mit hohem Engagement kümmert. Letztendlich profitieren aber beide Seiten: Der Anbieter generiert Umsatz und stärkt die Kundenbindung. Der Kunde erhält für ihn relevante Angebote und Informationen, die er möglicherweise selbst noch nicht im Blick hatte.


Das könnte Sie auch interessieren:

ERP-Integrationen sind herausfordernde Projekte. Oft vergrößern überbordende Funktionswünsche das Risiko des Scheiterns. Eine Alternative ist die Ausarbeitung einer langfristigen ERP-Strategie samt Roadmap.‣ weiterlesen

Julia C. Arlinghaus, Nicole Dreyer-Langlet, Katharina Hölzle, Daniel Hug, Dieter Meuser und Björn Sautter verstärken den Forschungsbeirat Industrie 4.0. Das von Acatech koordinierte Gremium berät strategisch und unabhängig, insbesondere das Bundesministerium für Bildung und Forschung (BMBF).‣ weiterlesen

Softwareanbieter Sage stellt neue Werkzeuge bereit, die eine Brücke zwischen der eigenen Systemumgebung und der Azure-Cloud von Microsoft bilden sollen.‣ weiterlesen

Fahrerlose Transportsysteme werden aufgrund ihrer Flexibilität für ständig neue Anwendungsfelder in Produktion und Logistik eingesetzt. Die Effizienz dieser Systeme steht und fällt mit ihrer Steuerungslogik. Um diese zu optimieren und schnell umzurüsten, hilft die rechnergestützte Simulation.‣ weiterlesen

Zum Jahreswechsel hat Kumavision Henrichsen4msd übernommen. Die Lösungen des DMS-Spezialisten sollen das eigene Portfolio ergänzen.‣ weiterlesen

BlueXP nennt NetApp sein neues Produkt zum Management von Multi- und Hybridcloud-Umgebungen. Das System ermöglicht die Verwaltung des Datenbestandes einschließlich On-Premises Unified Storage und First-Party Native Storage bei großen Public Cloud-Anbietern.‣ weiterlesen

Mittlerweile gibt es zahlreiche Optimierungsansätze, die auf IIoT-Vernetzung und KI-Anwendungen wie Bilderkennung basieren. Cloud-Plattformen helfen dabei, diese Technologien in den Produktionsalltag zu integrieren und die Entscheidungsfindung vor Ort an der Maschine zu unterstützen.‣ weiterlesen

Nachdem sich VDI-Direktor Ralph Appel Ende des vergangenen Jahres in den Ruhestand verabschiedet hat, tritt Adrian Willig dessen Nachfolge an.‣ weiterlesen

ERP-Systeme sind zentral für die Abwicklung der täglichen Geschäftsprozesse in Firmen. Und sie machen das gut. Das geben die meisten der rund 2.000 Anwenderunternehmen aus dem deutschsprachigen Raum in der Trovarit-Studie 'ERP in der Praxis' an. Für die aktuelle Ausgabe der seit 2004 realisierten Untersuchung wurden 130 ERP-Systeme bewertet, von denen 37 aufgrund ausreichender Datenbasis in die Studie eingingen.‣ weiterlesen

Das Mittelstand-Digital Zentrum Rheinland hat einen Praxisratgeber zum Thema Augmented und Virtual Reality für Unternehmen veröffentlicht. Die Publikation steht kostenfrei zum Download zur Verfügung.‣ weiterlesen

Ohne es zu bemerken, beeinflussen Websites, Programme oder Apps unsere Wahrnehmung und so auch unsere Handlungen. Denn die Frontends folgen bestimmten Regeln - den Gestaltprinzipien. Sie helfen, ein ansprechendes und verständliches Dashboard zu entwerfen.‣ weiterlesen