Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Migrationsprojekte

Den Datenumzug vorbereiten

Der deutsche Mittelstand ist noch immer von An- und Zukäufen, Übernahmen und Fusionen geprägt. Die Industriezweige Medizintechnik, Elektrotechnik und Pharmaindustrie stünden bei M&A-Aktivitäten besonders hoch im Kurs, so die Wirtschaftsprüfungsgesellschaft I-Advise. Viele Fachbereiche sehen sich nach solchen Zusammenschlüssen mit den Themen System- und Datenmigration konfrontiert. Entsprechende Projekte stellen neue Anforderungen an den bisherigen Umgang mit Daten, deren Qualität und Integration über verschiedene Unternehmenssysteme, Sparten und Gesellschaften hinweg.

Checkliste für gute Daten: 5 Dinge, die Unternehmen beachten sollten

Nr. 1: Datenqualität nicht als einmalige Aktion, sondern als kontinuierlichen Prozess begreifen. Funktionalitäten eines Kundendaten-Managementsystems verwenden.
Nr. 2: Datenqualität nicht als isolierten Prozess sehen, sondern ganzheitlich und unternehmensweit. Dies gelingt am besten, wenn sie in eine übergeordnete Data-Governance-Strategie inklusive Datenstandards eingebettet wird.
Nr. 3: Wahrheit der Daten etablieren: Dazu sind Datensilos aufzulösen, Daten zusammenzuführen und zu konsolidieren, aus den Stammdaten den Golden Record zu bilden und durch Hinzunahme der Bewegungsdaten zum Golden Profile anzureichern (Ground Truth).
Nr. 4: Ausrichtung auf digitale Geschäftsmodelle: Nutzung der Daten für Predictive Analytics unterstützt die Entwicklung neuer Geschäfts- und Vertriebsmodelle.
Nr. 5: Unternehmensweites Bewusstsein über den Wert von qualitativ hochwertigen Daten schaffen und diese als Basis der Wertschöpfungskette etablieren.

Data Cleansing bei Quellsystemen

Nach einer Initialisierungs- und Konzeptphase sollte der Status quo der Datenqualität in den Quellsystemen erhoben werden. Hierfür empfiehlt es sich, dass Projektverantwortliche zusammen mit den definierten Stakeholdern ein Datenqualitätsregelwerk für die betroffenen Geschäftsbereiche erstellen. Stakeholder können etwa Mitarbeiter der Fachbereiche (Domain Experts), der IT, Data Owner, Data Stewards sowie Experten des Zielsystems sein. Letztendlich soll dies sicherstellen, dass nur diejenigen Daten ins Zielsystem migriert werden, deren Qualität den Anforderungen der jeweiligen Geschäftsbereiche entspricht. Im nächsten Schritt, der Data Cleansing genannt wird, sollten die Daten einer postalischen Prüfung unterzogen, gegen offizielle Referenzdaten geprüft und gegebenenfalls korrigiert, Namenselemente vereinheitlicht und Dubletten identifiziert werden. Dabei sollte man die Suche nach Dubletten zum einen innerhalb eines Systems durchführen und zum anderen die verschiedenen Quellsysteme gegeneinander abgleichen. Dieser Prozess lässt sich automatisieren. Dennoch sollten Projektverantwortliche hier eine fehlertolerante Lösung einsetzen, die auch Dubletten erkennt, wenn die Schreibweise etwa nicht zu 100 Prozent übereinstimmt.

Transformationsregeln aufstellen

Im weiteren Projektverlauf erfolgt der Migrationsschritt. Spätestens hier muss feststehen, wie das Design des Zielsystems aussieht und welche Daten benötigt werden, um alle relevanten Informationen in das Zielsystem zu überführen. Datenmodelle zeigen, aus welchen Quellsystemen die jeweiligen Daten zu übernehmen sind. Bei diesem Schritt sollten ebenso feldbasierte Transformationsregelwerke und Mappings erstellt werden. Diese enthalten genaue Anweisungen für die Datenumwandlung. Konkret geht es dabei um die Harmonisierung der Datenmodelle, Struktur-Mappings, Werte-Mappings und komplexe Transformationsregeln. Die heterogenen Datenmodelle aus Quell- und Zielsystem werden dann in einem einheitlichen Datenmodell zusammengeführt.

Erst testen, dann migrieren

Anschließend erfolgt die technische Migration. Davor sollte in iterativen Testläufen geprüft werden, ob die Transformationsregeln die Ergebnisse erzielen, die den Anforderungen der Geschäftsbereiche entspricht. Testuser sollten die Daten prüfen, um Fehler so früh wie möglich zu entdecken. Außerdem muss das technische Szenario geprüft werden, damit es bei der Migration nicht zu vermeidbaren Problemen kommt. Sind die technischen Voraussetzungen für die Migration geschaffen und der Abnahmetest bestanden, kann die finale Datenmigration angestoßen und das Zielsystem produktiv genutzt werden. Ein Migrationsmonitoring sollte dabei die Übernahme der Daten vom Quellsystem ins Zielsystem überwachen. Anschließend können die Quellsysteme archiviert und aus der Produktivumgebung genommen werden.

Daten weiterhin pflegen

Stimmt die Datenbasis nicht, ist die Wahrscheinlichkeit hoch, dass Datenmigrations- und Datenintegrations-Projekte scheitern. Darüber hinaus sind gesetzlich vorgeschriebene Reportings nicht belastbar, Compliance-Anforderungen können nicht eingehalten und Geschäftspartner nicht eindeutig identifiziert werden. Unternehmen sollten der Qualitätssicherung also nicht nur während des Migrationsprojekts, sondern auch danach entsprechend hohe Aufmerksamkeit schenken – und das über alle Tochterunternehmen und Einheiten hinweg.


Datenmigration - Den Datenumzug vorbereiten | Markus Gallenberger ist Vice President Sales & Marketing bei Uniserv und im Vorstand des Arbeitskreises Digital Analytics & Optimization im Verband Bitkom e. V.Markus Gallenberger ist Vice President Sales & Marketing bei Uniserv und im Vorstand des Arbeitskreises Digital Analytics & Optimization im Verband Bitkom e. V.


Das könnte Sie auch interessieren:

Nach einem Rückgang im August ist der Ifo-Geschäftsklimaindex auch im September gesunken. Belastet werden die Zahlen dabei durch die schlechtere Stimmung in der Industrie.‣ weiterlesen

Mit Version 2.0 des IT-Sicherheitsgesetzes kommen auf viele Firmen höhere Anforderungen an ihre IT-Sicherheit zu. Die Schwellenwerte sinken, ab wann ein Unternehmen zur Umsetzung der Kritis-Auflagen verpflichtet ist. Diese betreffen jetzt auch Firmen, die laut Gesetzestext von 'erheblicher volkswirtschaftlicher Bedeutung für die Bundesrepublik Deutschland' sind. Damit sind auch Industrieunternehmen gemeint.‣ weiterlesen

Für die Umsetzung von IoT-Projekten ist nicht nur eine präzise fachliche Planung des Anwendungsfalls von Bedeutung, sondern eine vorherige Überprüfung des Reifegrads der IT-Organisation sowie des Reifegrads der IT im Umgang mit Cloud-Technologien.‣ weiterlesen

Der Maschinenbauer Manz bündelt unter dem Namen Total Fab Solutions sein Angebot für die Automatisierung von Fertigungslinien. Im Paket abgedeckt sind Umsetzungsschritte von Automatisierungsprojekten von der Fabrikplanung über die Prozess- und Materialflusssimulation oder die Integration bestehender Fertigungsprozesse bis hin zu Aufbau, Hochfahren und Optimierung schlüsselfertig zu übergebender Produktionslösungen.‣ weiterlesen

Beim traditionellen Qualitätsmanagement werden gefertigte Bauteile analysiert, um die Qualität der nächsten zu verbessern. Beim Predictive Quality-Ansatz wollen Hersteller analysegestützt eine höhere Qualität erzielen, ohne in die Vergangenheit schauen zu müssen. Bereits verfügbare Lösungen für den Ansatz integrieren die erforderlichen Daten auf einer MES-Plattform.‣ weiterlesen

Der Aufbau einer kabelgebundenen Ortungsinfrastruktur auf großen Flächen wie Lagerhallen, Baustellen oder in der Prozessindustrie ist kostspielig und zeitaufwendig.‣ weiterlesen

KI-getriebene Convolutional Neuronal Networks in selbstfahrenden Autos sollen andere Verkehrsteilnehmer erkennen. Dabei gilt: Je selbstständiger das Auto, desto komplexer der Algorithmus und undurchschaubarer dessen Weg zur getroffenen Entscheidung. Ein Validierungs-Tool soll helfen, diesen besser zu verstehen.‣ weiterlesen

Erfolgreiche KI-Projekte kombinieren das Domänenwissen von Prozessbeteiligten mit der Expertise von Datenanalysten und IT-Spezialistinnen. Da nicht jedes Maschinenbauunternehmen über diese drei wichtigen Kompetenzfelder verfügt, sind Kooperationen wichtige Bestandteile von KI-Projekten.‣ weiterlesen

Extreme Networks hat die Verfügbarkeit des Wi-Fi 6E Access Point bekanntgegeben. Als Wireless-Plattform erweitert der Zugangspunkt den Einsatzbereich auf das 6GHz-Frequenzband. Das Gerät wurde für Umgebungen mit hohen Anforderungen an Bandbreite und Nutzerdichte entwickelt und zeichnet sich Anbieterangaben zufolge durch seine Perfomance, Funktionalität und Sicherheit aus.‣ weiterlesen

Die Ersatzteilversorgung in der Automobilindustrie besitzt einen sehr kurzfristigen Charakter. Anwendungen zum Abbilden solcher Prozesse sind S/4Hana Supply Chain Management sowie S/4Hana-Automotive-Ersatzteilmanagement. Die wichtigen Zielgrößen für die Versorgungsqualität sind Lieferservicegrad und Time-to-Delivery.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige