Anzeige
Anzeige
Anzeige
Beitrag drucken

Simulation

Umformkraft und
Formfüllung simulieren

Die Umformung von Werkstücken kann durch lange Rechenzeiten oder die mangelnde Integration in CAD-Systeme zeitaufwändig sein. Mittels einer Prognosemethode können Umformkraft und Formfülle eines Werkstücks jedoch in wenigen Sekunden simuliert werden.

(Bild: Institut für Integrierte Produktion Hannover gemeinnützige GmbH)

(Bild: Institut für Integrierte Produktion Hannover gemeinnützige GmbH)

Die auf der Finite-Elemente-Methode (FEM) basierende Simulation von Umformprozessen gehört für viele Unternehmen aus dem Bereich der Massivumformung zum Tagesgeschäft. Sie ermöglicht detaillierte Aussagen über das Umformverhalten eines Werkstücks sowie über den Umformprozess. Dadurch können Produkte bereits vor dem Produktionsstart gezielt optimiert werden, was kostenintensive Versuchsschmiedungen minimiert. Obwohl die vorhandenen Simulationswerkzeuge ebenso wie die dafür notwendige Hardware bereits weit entwickelt sind, ist die Produkt- und Prozessentwicklung noch immer durch die Trennung von Gestaltung und Berechnung gekennzeichnet. Diese Trennung wird durch noch immer lange Rechenzeiten, die mangelnde Integration in CAD-Systeme oder die komplexe Bedienung der FEM-Software verursacht. Mittels einer Prognosemethode kann jedoch innerhalb weniger Sekunden die simulierte Umformkraft und die Formfüllung eine Werkstücks vorhersagt werden. Die Vision ist es, unabhängig von der Geometrie, wesentliche Informationen, die Einfluss auf das Umformergebnis besitzen, per Software bei der Auslegung eines Prozesses zu erhalten. Die Untersuchungen sind Teil des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Projektes ‚KI-basierte Prognose der Ergebnisse von Massivumformsimulationen (Kimulation)‘.

(Bild: Institut für Integrierte Produktion Hannover gemeinnützige GmbH)

Bei der Simulation werden die unterschiedlichen Verhältnisse von Durchmesser und Höhe untersucht. (Bild: Institut für Integrierte Produktion Hannover gemeinnützige GmbH)

Flansch als Beispielgeometrie

Als Beispielgeometrie wird ein aus zwei Zylinderabschnitten bestehender Flansch ohne Radien gewählt, der gratlos aus einem zylindrischen Rohteil umgeformt wird. Der Parameterraum der beiden Geometrien lässt sich daher mit Durchmesser und Höhen vollständig beschreiben und orientiert sich hinsichtlich der Werte an industriell eingesetzten Flanschgrößen. Der größere Durchmesser (Da) wird zum Anlernen eines Algorithmus von 50mm bis 500mm variiert; der kleinere Durchmesser (Di) von 25mm bis 250mm. Die beiden Höhen Ha und Hi werden jeweils von 5mm bis 50mm variiert. Als Prozessparameter wird die Umformtemperatur, d. h. die Temperatur, die das Rohteil zu Beginn aufweist, von 900°C bis 1250°C betrachtet. Es werden zum einen unterschiedliche Verhältnisse von Durchmesser und Höhe (Dr zu Hr) untersucht, was der Identifizierung einer optimalen Massenverteilung dient. Zum anderen wird der Anteil des Rohteilvolumens am Flanschvolumen verändert; also eine Unter- bzw. Überfüllung des Gesenks provoziert, um fehlerhaft zugeschnittene Rohteile nachzubilden. Durch die Variation der Parameter können die zwei Zielgrößen Umformkraft und Formfüllung systematisch untersucht werden.

Stauchen des Rohteils

Der Prozessablauf erfolgt durch Stauchen des Rohteils innerhalb eines Umformgesenks, welches die negative Form des Flansches aufweist. Unter Anwendung verschiedener Makros wurden automatisiert FEM-Simulationen als Datenbasis zum Anlernen der Prognosemethode erstellt, ausgeführt und ausgewertet. Das Ergebnis dieser Arbeiten ist eine für Data-Mining-Verfahren verarbeitbare Datentabelle, in der jeder Parameterkombination Werte für Formfüllung und Umformkraft aus der Simulation zugeordnet wurden. Neben den Verfahren der klassischen linearen Regression und Untersuchung von generalisiert linearen Modellen wurden ein künstliches neuronales Netz (3-Layer, 1 Hidden Layer) mittels Backpropagation trainiert sowie eine Support Vector Regression durchgeführt. Die Modellgüte der unterschiedlichen Data-Mining-Verfahren wurde über die Abweichung der Prognose von den simulierten Daten berechnet. Da mit dem künstlichen neuronalen Netz in der Trainings- und Testphase die genausten Prognosen erzielt wurden, wurde dieses für die Prognose von gänzlich neuen, unbekannten Kombinationen von Eingangsgrößen ausgewählt. In einem nächsten Schritt wird ein Software-Demonstrator entwickelt, mit dem Prognosen für neue Bauteile benutzerfreundlich und unabhängig von zuvor verwendeten Programmen abgewickelt werden können. Auch soll eine grafische Benutzeroberfläche erstellt werden. In der Eingabemaske können die entsprechenden sieben variierenden Parameter eingegeben werden. In dem nächsten Dialog wird dem Benutzer farblich quittiert, ob die jeweilige Eingabe korrekt war und im Falle einer Falscheingabe eine gültige Alternative vorgeschlagen. Der abschließende Ausgabedialog zeigt nach weniger als zehn Sekunden eine Prognose der Umformkraft und der Formfüllung. Zwecks Übersichtlichkeit ist neben den eingegebenen Daten selbst auch eine Visualisierung des Prozesses dargestellt. Für die Validierung der Prognosemethode wird als Basis zufällig eine Parameterkombination aus den zuvor simulierten Datensätzen ausgewählt. Einer der sieben Parameterwerte wird nun verändert, sodass für diese neue Parameterkombination keine Referenzen bezüglich der Umformkraft und der Formfüllung vorliegen. Die Veränderung der Parameterwerte wird solange fortgeführt bis alle ungleich den Werten aus der Datengrundlage sind. Die Ähnlichkeit zur Datenbasis sinkt folglich. Für die sieben entstandenen Parameterkombinationen werden neue FEM-Simulationen als Validierungsdatensatz erstellt und ausgewertet.

Differenz zum Referenzwert

Die Validierung zeigt, dass die Differenz bzw. Ungenauigkeit der Prognose bezüglich der Umformkraft bei Veränderung aller Parameterwerte bis zu 27 Prozent gegenüber dem Referenzwert aus der Simulation beträgt. Die maximale Differenz der Prognose bezüglich der Formfüllung wird ebenfalls für die am stärksten veränderte Parameterkombination erreicht und beträgt 6,5 Prozent. Diese verhältnismäßig geringe Differenz ist durch die geringere Spanne innerhalb der Referenzwerte während des Trainings der Prognosemethode zu erklären. Eine besonders starke Erhöhung der Differenz um knapp neun Prozent ist bei Veränderung des Verhältnisses von Rohteildurchmesser und -höhe Dr zu Hr beobachten. Dies zeigt, dass eine Parameterveränderung umso gravierender ist, wenn keine anderen Parameter das Objekt näher beschreiben. Durch die entwickelte Methode ist eine Einsparung an Iterationsschleifen innerhalb der Simulationsphase durch Prognose der maximal auftretenden Umformkraft und der Formfüllung möglich. Im Rahmen der Untersuchungen konnte eine ausgezeichnete Prognosegüte von unter vier Prozent für Geometrien ähnlich zu den Trainingsdaten (bis zu drei veränderte Parameterwerte) erreicht werden. Die Prognosegüte für stärker von den Trainingsdaten abweichende Geometrien ist niedriger und sollte in weiterführenden Untersuchungen zu Prognosen generalisierter Bauteilgeometrien behandelt werden. Insgesamt ist die Prognose entscheidender Messgrößen einer Umformung bei mehreren unbekannten Parametern ein nötiger Schritt, um die Vision, zukünftig Algorithmen zur allgemeinen und verlässlichen Prognose von Simulationen entwickeln, zu erreichen.


Das könnte Sie auch interessieren:

Die Betreiber digitaler Marktplätze zählen zu den wertvollsten Konzernen der Welt. Sie dominieren die Märkte, indem sie Konsumenten und Produzenten als sogenannte Matchmaker zusammenbringen. Die Mechanismen dahinter sind komplex und benachteiligen mitunter die Marktteilnehmer. Bei Bosch Research entsteht aktuell ein alternatives Modell einer Plattformökonomie, das auf dezentrale Technologien und die Kooperation der Marktteilnehmer setzt. Das Ziel: Eine faire und offene digitale Wirtschaft ohne einen dominanten Akteur an der Spitze.‣ weiterlesen

Produzierte Eisenbahnräder müssen der vorgegebenen Qualität genau entsprechen - und diese muss dokumentiert werden. Darüber hinaus wird es für Unternehmen immer wichtiger, die eigenen Prozesse zu kennen und zu verbessern. Ein Produktions-Informations-System kann in beiden Fällen Aufschluss geben.‣ weiterlesen

Während sich wenige über den Funktionsumfang von SAP-Sofware beklagen, sieht es bei ihrer Bedienung etwas anders aus. Ungelenke Benutzerführung lässt sich aber ändern: Fachleute für SAP-Benutzeroberflächen haben auf der 3. Jahrestagung SAP UX/UI 2020 im November die Möglichkeit, sich intensiv über die Optimierungsmöglichkeiten von SAP-Oberflächen weiterzubilden.‣ weiterlesen

Am Fraunhofer-Institut für Produktionstechnologie IPT entsteht gerade die Software KMUsecure. Das Programm soll produzierende KMU dabei unterstützen, kritische Netzwerkschnittstellen zu sichern und Vernetzung leichter zur Optimierung zu nutzen.‣ weiterlesen

85 Prozent der CISOs gaben in einer Umfrage von Netwrix an, die Cybersicherheit hintangestellt zu haben, damit Beschäftigte schnell remote arbeiten könnten. Der 2020 Cyber Threats Report zeigte auch, dass sich jedes vierte Unternehmen nach der Pandemie einem höheren IT-Sicherheitsrisiko ausgesetzt sieht als zuvor.‣ weiterlesen

Der SAP-Partner und MES-Integrator Salt Solutions wird Teil von Accenture. Wie die Unternehmensberatung bekannt gab, ist die Vereinbarung bereits unterschrieben.‣ weiterlesen

Innovation gehört zu den drei wichtigsten Digitalisierungszielen im Mittelstand, gleich nach Mitarbeiterproduktivität und Prozessmodernisierung. Das ist das Ergebnis einer Untersuchung, die im Auftrag des ERP-Anbieters Proalpha entstand. Doch wo ist Innovation gewünscht und können ERP-Systeme diese Erneuerung unterstützen?‣ weiterlesen

Im Projekt Scale4Edge arbeiten 22 Akteure aus Wissenschaft und Wirtschaft an besonders vertrauenswürdiger Computerhardware. Entstehen soll ein skalierbares Edge-Computing-Ökosystem rund um die Risc-V-Architektur etwa für Industrieanwendungen, Heimautomation und selbstfahrende Autos.‣ weiterlesen

Mit künstlicher Intelligenz lassen sich Rüstzeiten zwischen Aufträgen optimieren, um die Feinplanung zu unterstützen. Die Software Rüstzeitoptimierer von Anacision leistet bereits in der MVP-Version genau das - und soll in Kürze für verschiedene Fertigungstechniken erhältlich sein.‣ weiterlesen

Das IAB-Arbeitsmarktbarometer ist im September 2020 um 1,7 Punkte auf 100,1 Punkte gestiegen. Erstmals seit Beginn der Corona-Krise liegt der Frühindikator des Instituts für Arbeitsmarkt- und Berufsforschung (IAB) damit nicht mehr im negativen Bereich.‣ weiterlesen

Eine neue Art von Software könnte die gängigen Konzepte für Fabriksoftware bald fundamental verändern. Auf der Basis einer dezentralen Edge Computing-Architektur lassen sich die traditionell hohen Ansprüche an Skalierbarkeit, Flexibilität und Zuverlässigkeit vergleichsweise problemlos erfüllen – bei deutlich geringeren Investitionskosten.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige