Anzeige
Anzeige
Beitrag drucken

Simulation

Umformkraft und
Formfüllung simulieren

Die Umformung von Werkstücken kann durch lange Rechenzeiten oder die mangelnde Integration in CAD-Systeme zeitaufwändig sein. Mittels einer Prognosemethode können Umformkraft und Formfülle eines Werkstücks jedoch in wenigen Sekunden simuliert werden.

(Bild: Institut für Integrierte Produktion Hannover gemeinnützige GmbH)

(Bild: Institut für Integrierte Produktion Hannover gemeinnützige GmbH)

Die auf der Finite-Elemente-Methode (FEM) basierende Simulation von Umformprozessen gehört für viele Unternehmen aus dem Bereich der Massivumformung zum Tagesgeschäft. Sie ermöglicht detaillierte Aussagen über das Umformverhalten eines Werkstücks sowie über den Umformprozess. Dadurch können Produkte bereits vor dem Produktionsstart gezielt optimiert werden, was kostenintensive Versuchsschmiedungen minimiert. Obwohl die vorhandenen Simulationswerkzeuge ebenso wie die dafür notwendige Hardware bereits weit entwickelt sind, ist die Produkt- und Prozessentwicklung noch immer durch die Trennung von Gestaltung und Berechnung gekennzeichnet. Diese Trennung wird durch noch immer lange Rechenzeiten, die mangelnde Integration in CAD-Systeme oder die komplexe Bedienung der FEM-Software verursacht. Mittels einer Prognosemethode kann jedoch innerhalb weniger Sekunden die simulierte Umformkraft und die Formfüllung eine Werkstücks vorhersagt werden. Die Vision ist es, unabhängig von der Geometrie, wesentliche Informationen, die Einfluss auf das Umformergebnis besitzen, per Software bei der Auslegung eines Prozesses zu erhalten. Die Untersuchungen sind Teil des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Projektes ‚KI-basierte Prognose der Ergebnisse von Massivumformsimulationen (Kimulation)‘.

(Bild: Institut für Integrierte Produktion Hannover gemeinnützige GmbH)

Bei der Simulation werden die unterschiedlichen Verhältnisse von Durchmesser und Höhe untersucht. (Bild: Institut für Integrierte Produktion Hannover gemeinnützige GmbH)

Flansch als Beispielgeometrie

Als Beispielgeometrie wird ein aus zwei Zylinderabschnitten bestehender Flansch ohne Radien gewählt, der gratlos aus einem zylindrischen Rohteil umgeformt wird. Der Parameterraum der beiden Geometrien lässt sich daher mit Durchmesser und Höhen vollständig beschreiben und orientiert sich hinsichtlich der Werte an industriell eingesetzten Flanschgrößen. Der größere Durchmesser (Da) wird zum Anlernen eines Algorithmus von 50mm bis 500mm variiert; der kleinere Durchmesser (Di) von 25mm bis 250mm. Die beiden Höhen Ha und Hi werden jeweils von 5mm bis 50mm variiert. Als Prozessparameter wird die Umformtemperatur, d. h. die Temperatur, die das Rohteil zu Beginn aufweist, von 900°C bis 1250°C betrachtet. Es werden zum einen unterschiedliche Verhältnisse von Durchmesser und Höhe (Dr zu Hr) untersucht, was der Identifizierung einer optimalen Massenverteilung dient. Zum anderen wird der Anteil des Rohteilvolumens am Flanschvolumen verändert; also eine Unter- bzw. Überfüllung des Gesenks provoziert, um fehlerhaft zugeschnittene Rohteile nachzubilden. Durch die Variation der Parameter können die zwei Zielgrößen Umformkraft und Formfüllung systematisch untersucht werden.

Stauchen des Rohteils

Der Prozessablauf erfolgt durch Stauchen des Rohteils innerhalb eines Umformgesenks, welches die negative Form des Flansches aufweist. Unter Anwendung verschiedener Makros wurden automatisiert FEM-Simulationen als Datenbasis zum Anlernen der Prognosemethode erstellt, ausgeführt und ausgewertet. Das Ergebnis dieser Arbeiten ist eine für Data-Mining-Verfahren verarbeitbare Datentabelle, in der jeder Parameterkombination Werte für Formfüllung und Umformkraft aus der Simulation zugeordnet wurden. Neben den Verfahren der klassischen linearen Regression und Untersuchung von generalisiert linearen Modellen wurden ein künstliches neuronales Netz (3-Layer, 1 Hidden Layer) mittels Backpropagation trainiert sowie eine Support Vector Regression durchgeführt. Die Modellgüte der unterschiedlichen Data-Mining-Verfahren wurde über die Abweichung der Prognose von den simulierten Daten berechnet. Da mit dem künstlichen neuronalen Netz in der Trainings- und Testphase die genausten Prognosen erzielt wurden, wurde dieses für die Prognose von gänzlich neuen, unbekannten Kombinationen von Eingangsgrößen ausgewählt. In einem nächsten Schritt wird ein Software-Demonstrator entwickelt, mit dem Prognosen für neue Bauteile benutzerfreundlich und unabhängig von zuvor verwendeten Programmen abgewickelt werden können. Auch soll eine grafische Benutzeroberfläche erstellt werden. In der Eingabemaske können die entsprechenden sieben variierenden Parameter eingegeben werden. In dem nächsten Dialog wird dem Benutzer farblich quittiert, ob die jeweilige Eingabe korrekt war und im Falle einer Falscheingabe eine gültige Alternative vorgeschlagen. Der abschließende Ausgabedialog zeigt nach weniger als zehn Sekunden eine Prognose der Umformkraft und der Formfüllung. Zwecks Übersichtlichkeit ist neben den eingegebenen Daten selbst auch eine Visualisierung des Prozesses dargestellt. Für die Validierung der Prognosemethode wird als Basis zufällig eine Parameterkombination aus den zuvor simulierten Datensätzen ausgewählt. Einer der sieben Parameterwerte wird nun verändert, sodass für diese neue Parameterkombination keine Referenzen bezüglich der Umformkraft und der Formfüllung vorliegen. Die Veränderung der Parameterwerte wird solange fortgeführt bis alle ungleich den Werten aus der Datengrundlage sind. Die Ähnlichkeit zur Datenbasis sinkt folglich. Für die sieben entstandenen Parameterkombinationen werden neue FEM-Simulationen als Validierungsdatensatz erstellt und ausgewertet.

Differenz zum Referenzwert

Die Validierung zeigt, dass die Differenz bzw. Ungenauigkeit der Prognose bezüglich der Umformkraft bei Veränderung aller Parameterwerte bis zu 27 Prozent gegenüber dem Referenzwert aus der Simulation beträgt. Die maximale Differenz der Prognose bezüglich der Formfüllung wird ebenfalls für die am stärksten veränderte Parameterkombination erreicht und beträgt 6,5 Prozent. Diese verhältnismäßig geringe Differenz ist durch die geringere Spanne innerhalb der Referenzwerte während des Trainings der Prognosemethode zu erklären. Eine besonders starke Erhöhung der Differenz um knapp neun Prozent ist bei Veränderung des Verhältnisses von Rohteildurchmesser und -höhe Dr zu Hr beobachten. Dies zeigt, dass eine Parameterveränderung umso gravierender ist, wenn keine anderen Parameter das Objekt näher beschreiben. Durch die entwickelte Methode ist eine Einsparung an Iterationsschleifen innerhalb der Simulationsphase durch Prognose der maximal auftretenden Umformkraft und der Formfüllung möglich. Im Rahmen der Untersuchungen konnte eine ausgezeichnete Prognosegüte von unter vier Prozent für Geometrien ähnlich zu den Trainingsdaten (bis zu drei veränderte Parameterwerte) erreicht werden. Die Prognosegüte für stärker von den Trainingsdaten abweichende Geometrien ist niedriger und sollte in weiterführenden Untersuchungen zu Prognosen generalisierter Bauteilgeometrien behandelt werden. Insgesamt ist die Prognose entscheidender Messgrößen einer Umformung bei mehreren unbekannten Parametern ein nötiger Schritt, um die Vision, zukünftig Algorithmen zur allgemeinen und verlässlichen Prognose von Simulationen entwickeln, zu erreichen.


Das könnte Sie auch interessieren:

Der VDMA hat die Produktionsprognose für das laufende Jahr angehoben. War der Verband bisher von einem Zuwachs von 4 Prozent ausgegangen, so rechnet man nun mit einem Produktionsplus von 7 Prozent.‣ weiterlesen

Roboter gehören zum Rückgrat der smarten Fabrik. Doch die Automaten könnten außerhalb der Fabriken viel leisten. Das Dresdner Unternehmen Wandelbots hat jetzt eine Lösung entwickelt, die den Robotereinsatz auch für kleine und mittlere Unternehmen vieler Branchen interessant machen soll. Ein Industrie-PC von Kontron übernimmt in diesem System eine zentrale Aufgabe.‣ weiterlesen

Die Auftragsbücher der deutschen Industrieunternehmen füllen sich und die Produktion nimmt zu. Laut Ifo-Konjunkturumfrage liegen die Produktionserwartungen im März sogar auf dem höchsten Stand seit 1991.‣ weiterlesen

xyzWieviel sind Daten wert? Welche Daten sind für die Effizienzsteigerung der Produktion, die Qualitätssteigerung der Produkte oder neue Geschäftsmodelle für die produzierende Industrie und ihre Dienstleistungen von Nutzen und wie kann ihr Wert gemessen und beziffert werden? Am 13. Januar 2021 konstituierte sich dazu der Fachausschuss 7.24 Big Data in der VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik neu, um die Experten-Empfehlung VDI/VDE 3715 'Data Assets' zu entwickeln. Im Fachausschuss wird ein metrischer Standard entwickelt für die Ermittlung des ökonomischen Wertes technikbezogener Daten innerhalb der Wertschöpfungskette.‣ weiterlesen

Zutrittskontrollsysteme dokumentieren Aufenthaltszeiten, können bei der Corona-Kontaktverfolgung unterstützen und ermöglichen die individuelle Arbeitszeiterfassung. Vor dem Hintergrund der Digitalisierung, der Pandemie sowie dem Trend zum dezentralen Arbeiten lohnt sich ein genauer Blick auf die aktuellen Anforderungen.‣ weiterlesen

Mit dem Security Operations Center will Vinci Energies Cybersecurity-Spezialisten vernetzen. Die Eröffnung ist für das zweite Halbjahr 2021 vorgesehen.‣ weiterlesen

Plus 12 Prozent im Vergleich zum Vorjahr haben die deutschen Maschinen und Anlagenbauer in Ihren Auftragsbüchern verzeichnet. Dabei kamen besonders aus dem Ausland mehr Aufträge.‣ weiterlesen

In der Softwareentwicklung gewinnen die Low- und No-Code-Plattformen zunehmend an Bedeutung. Doch neben den Vorteilen etwa in Sachen Geschwindigkeit oder Handhabung sind dem Low-/No-Code-Ansatz noch Grenzen gesetzt, etwa wenn es zu komplex wird.‣ weiterlesen

Low-Code/No-Code-Entwicklungen bieten Potenzial für Industrieunternehmen. Dadurch wird Software-Programmierung auch Mitarbeitern zugänglich, die nicht über tiefes Fachwissen verfügen. Mendix hat in einer Studie untersucht, wie es um den Low-Code/No-Code-Ansatz in Deutschland bestellt ist.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige