Die Umformung von Werkstücken kann durch lange Rechenzeiten oder die mangelnde Integration in CAD-Systeme zeitaufwändig sein. Mittels einer Prognosemethode können Umformkraft und Formfülle eines Werkstücks jedoch in wenigen Sekunden simuliert werden.
(Bild: Institut für Integrierte Produktion Hannover gemeinnützige GmbH)
Die auf der Finite-Elemente-Methode (FEM) basierende Simulation von Umformprozessen gehört für viele Unternehmen aus dem Bereich der Massivumformung zum Tagesgeschäft. Sie ermöglicht detaillierte Aussagen über das Umformverhalten eines Werkstücks sowie über den Umformprozess. Dadurch können Produkte bereits vor dem Produktionsstart gezielt optimiert werden, was kostenintensive Versuchsschmiedungen minimiert. Obwohl die vorhandenen Simulationswerkzeuge ebenso wie die dafür notwendige Hardware bereits weit entwickelt sind, ist die Produkt- und Prozessentwicklung noch immer durch die Trennung von Gestaltung und Berechnung gekennzeichnet. Diese Trennung wird durch noch immer lange Rechenzeiten, die mangelnde Integration in CAD-Systeme oder die komplexe Bedienung der FEM-Software verursacht. Mittels einer Prognosemethode kann jedoch innerhalb weniger Sekunden die simulierte Umformkraft und die Formfüllung eine Werkstücks vorhersagt werden. Die Vision ist es, unabhängig von der Geometrie, wesentliche Informationen, die Einfluss auf das Umformergebnis besitzen, per Software bei der Auslegung eines Prozesses zu erhalten. Die Untersuchungen sind Teil des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Projektes ‚KI-basierte Prognose der Ergebnisse von Massivumformsimulationen (Kimulation)‘.
Bei der Simulation werden die unterschiedlichen Verhältnisse von Durchmesser und Höhe untersucht. (Bild: Institut für Integrierte Produktion Hannover gemeinnützige GmbH)
Flansch als Beispielgeometrie
Als Beispielgeometrie wird ein aus zwei Zylinderabschnitten bestehender Flansch ohne Radien gewählt, der gratlos aus einem zylindrischen Rohteil umgeformt wird. Der Parameterraum der beiden Geometrien lässt sich daher mit Durchmesser und Höhen vollständig beschreiben und orientiert sich hinsichtlich der Werte an industriell eingesetzten Flanschgrößen. Der größere Durchmesser (Da) wird zum Anlernen eines Algorithmus von 50mm bis 500mm variiert; der kleinere Durchmesser (Di) von 25mm bis 250mm. Die beiden Höhen Ha und Hi werden jeweils von 5mm bis 50mm variiert. Als Prozessparameter wird die Umformtemperatur, d. h. die Temperatur, die das Rohteil zu Beginn aufweist, von 900°C bis 1250°C betrachtet. Es werden zum einen unterschiedliche Verhältnisse von Durchmesser und Höhe (Dr zu Hr) untersucht, was der Identifizierung einer optimalen Massenverteilung dient. Zum anderen wird der Anteil des Rohteilvolumens am Flanschvolumen verändert; also eine Unter- bzw. Überfüllung des Gesenks provoziert, um fehlerhaft zugeschnittene Rohteile nachzubilden. Durch die Variation der Parameter können die zwei Zielgrößen Umformkraft und Formfüllung systematisch untersucht werden.
Der Prozessablauf erfolgt durch Stauchen des Rohteils innerhalb eines Umformgesenks, welches die negative Form des Flansches aufweist. Unter Anwendung verschiedener Makros wurden automatisiert FEM-Simulationen als Datenbasis zum Anlernen der Prognosemethode erstellt, ausgeführt und ausgewertet. Das Ergebnis dieser Arbeiten ist eine für Data-Mining-Verfahren verarbeitbare Datentabelle, in der jeder Parameterkombination Werte für Formfüllung und Umformkraft aus der Simulation zugeordnet wurden. Neben den Verfahren der klassischen linearen Regression und Untersuchung von generalisiert linearen Modellen wurden ein künstliches neuronales Netz (3-Layer, 1 Hidden Layer) mittels Backpropagation trainiert sowie eine Support Vector Regression durchgeführt. Die Modellgüte der unterschiedlichen Data-Mining-Verfahren wurde über die Abweichung der Prognose von den simulierten Daten berechnet. Da mit dem künstlichen neuronalen Netz in der Trainings- und Testphase die genausten Prognosen erzielt wurden, wurde dieses für die Prognose von gänzlich neuen, unbekannten Kombinationen von Eingangsgrößen ausgewählt. In einem nächsten Schritt wird ein Software-Demonstrator entwickelt, mit dem Prognosen für neue Bauteile benutzerfreundlich und unabhängig von zuvor verwendeten Programmen abgewickelt werden können. Auch soll eine grafische Benutzeroberfläche erstellt werden. In der Eingabemaske können die entsprechenden sieben variierenden Parameter eingegeben werden. In dem nächsten Dialog wird dem Benutzer farblich quittiert, ob die jeweilige Eingabe korrekt war und im Falle einer Falscheingabe eine gültige Alternative vorgeschlagen. Der abschließende Ausgabedialog zeigt nach weniger als zehn Sekunden eine Prognose der Umformkraft und der Formfüllung. Zwecks Übersichtlichkeit ist neben den eingegebenen Daten selbst auch eine Visualisierung des Prozesses dargestellt. Für die Validierung der Prognosemethode wird als Basis zufällig eine Parameterkombination aus den zuvor simulierten Datensätzen ausgewählt. Einer der sieben Parameterwerte wird nun verändert, sodass für diese neue Parameterkombination keine Referenzen bezüglich der Umformkraft und der Formfüllung vorliegen. Die Veränderung der Parameterwerte wird solange fortgeführt bis alle ungleich den Werten aus der Datengrundlage sind. Die Ähnlichkeit zur Datenbasis sinkt folglich. Für die sieben entstandenen Parameterkombinationen werden neue FEM-Simulationen als Validierungsdatensatz erstellt und ausgewertet.
Die Validierung zeigt, dass die Differenz bzw. Ungenauigkeit der Prognose bezüglich der Umformkraft bei Veränderung aller Parameterwerte bis zu 27 Prozent gegenüber dem Referenzwert aus der Simulation beträgt. Die maximale Differenz der Prognose bezüglich der Formfüllung wird ebenfalls für die am stärksten veränderte Parameterkombination erreicht und beträgt 6,5 Prozent. Diese verhältnismäßig geringe Differenz ist durch die geringere Spanne innerhalb der Referenzwerte während des Trainings der Prognosemethode zu erklären. Eine besonders starke Erhöhung der Differenz um knapp neun Prozent ist bei Veränderung des Verhältnisses von Rohteildurchmesser und -höhe Dr zu Hr beobachten. Dies zeigt, dass eine Parameterveränderung umso gravierender ist, wenn keine anderen Parameter das Objekt näher beschreiben. Durch die entwickelte Methode ist eine Einsparung an Iterationsschleifen innerhalb der Simulationsphase durch Prognose der maximal auftretenden Umformkraft und der Formfüllung möglich. Im Rahmen der Untersuchungen konnte eine ausgezeichnete Prognosegüte von unter vier Prozent für Geometrien ähnlich zu den Trainingsdaten (bis zu drei veränderte Parameterwerte) erreicht werden. Die Prognosegüte für stärker von den Trainingsdaten abweichende Geometrien ist niedriger und sollte in weiterführenden Untersuchungen zu Prognosen generalisierter Bauteilgeometrien behandelt werden. Insgesamt ist die Prognose entscheidender Messgrößen einer Umformung bei mehreren unbekannten Parametern ein nötiger Schritt, um die Vision, zukünftig Algorithmen zur allgemeinen und verlässlichen Prognose von Simulationen entwickeln, zu erreichen.
Autoren:Neelam Rasche, Sebastian Brede, Jan Langner, Malte Stonis und Christopher Roe sind Mitarbeiter am Institut für Integrierte Produktion Hannover gemeinnützige GmbH.
Autoren: Neelam Rasche, Sebastian Brede, Jan Langner, Malte Stonis und Christopher Roe sind Mitarbeiter am Institut für Integrierte Produktion Hannover gemeinnützige GmbH.
Mittelständische Unternehmen investieren selbst in schwierigen Zeiten in Microsoft-Technologien, weil sie überzeugt sind, dass ihre Mitarbeiterproduktivität steigt und sich ihre Kostenstruktur bessert. Microsoft hat mit dem Microsoft-Partner-Network ein Netzwerk aufgebaut, das ein Forum für den Aufbau von Partnerschaften, Zugang zu Ressourcen und einen Rahmen für Dialoge und Kooperationen bietet. Für unsere Leser gibt die Microsoft-Partnerübersicht in Ausgabe Juli/August der IT&Production Tipps für die Suche nach einer geeigneten Branchen- oder Speziallösung im Bereich des produzierenden Gewerbes.
Auf der Suche nach Innovation, nach neuen Lösungen und der Abgrenzung zum Mitbewerb vernetzen sich zunehmend mehr Unternehmen mit externen Experten und Partnern. SAP hat mit dem SAP-Ecosystem ein Netzwerk aufgebaut, das ein Forum für den Aufbau von Partnerschaften, Zugang zu Ressourcen und einen Rahmen für Dialoge und Kooperationen bietet. In der Maiausgabe der Fachzeitschrift IT&Production erhalten unsere Leser einen aktuellen Überblick zum SAP-Ecosystem im Bereich des produzierenden Gewerbes.
Anbieter & Produkte
Qualität, Lieferketten, Rückverfolgbarkeit – Nachhaltigkeit hat viele Facetten
MPDV Mikrolab GmbH – WE CREATE SMART FACTORIES
augmented instructions – digitalisiertes Know how unterstützt die Industrie beim Wissenstransfer
Wachstum durch Kundenorientierung: Das Geheimnis liegt in einem smarten Variantenkonfigurator
becosEPS – Enterprise Planning System
Weltweit führende APS-Technologie für alle industriellen Anforderungen
Make Lean Leaner
IIoT in Stahl Service Centern
ANZEIGE
Whitepaper
Vom 4-Stufen-Modell zum Regelkreis
Mit Kennzahlen die Produktion im Griff
Vollautomatische Feinplanung
Smart Factory Elements
Monitoring IT, OT and IIoT with Paessler PRTG: use cases and dashboards
Videos
Erfolgreiche Asprova APS Einführung bei Kontio, finnischer Hersteller von Blockhäusern
Specops Password Auditor – Evaluieren Sie kostenlos Ihre Passwortsicherheit in Active Directory
Erfolgreiche Asprova APS Einführung bei Prospera: Laserschneiden, Biegen und Stanzen. Aprova hat all unsere Planungsprobleme gelöst.
Erfolgreiche Asprova APS Einführung bei Fogel, Hersteller von gewerblichen Kühl- und Gefrieranlagen für Abfüller kohlensäurehaltiger Getränke
Ein Unternehmen, das sich mit der Auswahl eines ERP- Systems befasst, muss sich gleichsam mit einem viel- schichtigen Software-Markt und unklaren Interessen- lagen an interne Abwick- lungsprozesse auseinander- setzen. Guter Rat bei der Investitionsentscheidung ist teuer. ERP/CRM Wissen Kompakt unterstützt Sie bei der gezielten Investition in die IT-Infrastruktur.
Immer mehr Anbieter von Maschinen, Automatisierungstechnik und Industriesoftware integrieren künstliche Intelligenz in ihre Produkte. Das ganze Potenzial spielen selbstlernende Systeme aber erst aus, wenn sie passgenau auf ihren Einsatz in Fertigung und Büro zugeschnitten wurden. Über beide Möglichkeiten, als Fertiger die Vorzüge von industrieller KI zu nutzen, geht es im regelmäßig aktualisierten Themenheft Künstliche Intelligenz.
Das Internet of Things verändert Produktwelten und die Vernetzung in der Fertigung gleichermaßen. Entstehende Ökosysteme laden zur einer neuen Form der Zusammenarbeit ein. Die Spezialausgabe IoT Wissen Kompakt informiert über die Technologie, Projektierung und Anbieter für die eigene Applikation, in- und außerhalb der Fabrik.
Um alle Potenziale eines MES umfassend ausnutzen zu können, beleuchten unsere Autoren in der Serie von MES Wissen Kompakt die erfolgskritischen Faktoren, um Fertigungsunternehmen präventiv zu steuern. Darüber hinaus präsentiert MES Wissen Kompakt ein breites Spektrum an Firmenportraits, Produkt- neuheiten und Dienst- leistungen im MES-Umfeld.