Anzeige
Anzeige
Beitrag drucken

Stücklistenmanagement

Wer sucht, der findet

Egal aus wie vielen Teilen ein Produkt besteht. Liegen Informationen zu den benötigten Komponenten vor, vereinfacht das die Produktion. Mit künstlicher Intelligenz und sogenannten Insight Engines können solche Informationen aus unterschiedlichen Systemen zusammengetragen werden.

 (Bild: ©vegefox.com/stock.adobe.com)

(Bild: ©vegefox.com/stock.adobe.com)

Stücklistenmanagement ist ein wichtiger Bestandteil bei der Fertigung von Produkten. Neben Zeichnungen und Arbeitsplänen bilden sie eine Basis des betrieblichen Datenbestandes. Dabei gestaltet es sich nicht immer einfach, alle relevanten Informationen zu den benötigten Komponenten übersichtlich zur Verfügung zu haben. Gerade bei Lieferverzögerungen oder Lieferausfällen benötigter Komponenten ist es wettbewerbsentscheidend, den Überblick zu behalten, ohne wertvolle Ressourcen wie Mitarbeiter unnötig zu binden.

Mit KI suchen

Systeme zur Verwaltung von Stücklisten bzw. Bill of Materials (BOM) bieten zwar Suchfunktionen, jedoch sind diese beschränkt auf die Daten des jeweiligen Systems. Anwender finden so zwar Informationen zu ihrem Suchbegriff, bei weiterführenden Informationen stoßen diese Suchfunktionen oft an ihre Grenzen. Anwender müssen also in unterschiedlichen Anwendungen suchen, was widerum mit Zeitaufwand verbunden ist. Intelligente Wissensmanagementlösungen, sogenannte Insight Engines, können bei der Bereitstellung genau dieser benötigten Informationen helfen. Insight Engines kombinieren klassische Suchfunktionen mit künstlicher Intelligenz. Mittels moderner Technologien der Spracherkennung sowie Verfahren des maschinellen Lernens erleichtern sie die Suche nach Informationen. Insight Engines beziehen die Inhalte aus sämtlichen relevanten Unternehmensdatenquellen in ihre Recherche ein – unabhängig davon, ob es sich dabei um strukturierte oder unstrukturierte Inhalte handelt. Dadurch können mit nur einer Suchabfrage die Ergebnisse zu der abgefragten Komponente aus allen Datenquellen extrahiert und in einer 360-Grad-Sicht dargestellt werden. So erhalten die Anwender sofort zusätzliche relevante Informationen, beispielsweise länderspezifische Restriktionen oder Verfügbarkeiten, ohne eine erneute Rechercheabfrage in einem weiteren System zu starten. Die Suchabfrage selbst kann in natürlicher Sprache gestellt werden. Dabei sind Insight Engines durch Natural Language Processing (NLP) und Natural Language Understanding (NLU) in der Lage, Phrasen, ganze Sätze oder Fragen korrekt zu verstehen. NLP sorgt dabei für das Verstehen, Übersetzen und Interpretieren der menschlichen Sprache, während mit NLU die Intention bzw. das konkrete Anliegen des Anwenders identifiziert wird. Durch die semantische Analyse der Inhalte und die Verknüpfung von Informationen ist es auch möglich, Antworten auf Fragestellungen mit ‚wo‘, ‚wer‘, ‚was‘, ‚wann‘ oder ‚wie‘ zu geben. Mittels Deep Learning können Insight Engines zudem aus Erfahrungen und Ergebnissen lernen. Die Basis dafür stellt das Nutzerverhalten dar. Abhängig von vorangegangenen Suchabfragen oder davon, welche Treffer wann, wie oft und in welchem Zusammenhang aufgerufen werden, kategorisieren Insight Engines die Relevanz der Ergebnisse und speichern diese für künftige Abfragen. Oft gesuchte Informationen stellt die Technologie demnach bei ähnlichen oder gleichen Suchabfragen vorrangig zur Verfügung. Abhängig von Fachbereich, Position, Aufgabengebiet und Zugriffsberechtigungen bereitet die Lösung die Ergebnisse in Dashboards auf. Dabei prüft das System bei jeder Abfrage letztere direkt an der Datenquelle, sodass auch kurzfristige Änderungen schnell berücksichtigt werden.

Einsatz in der Wartung

Insight Engines können zur unternehmensweiten Vernetzung und Bereitstellung von Informationen beitragen. Insight Engines finden Anwendung in zahlreichen Branchen, unter anderem im Bereich der Wartung.


Das könnte Sie auch interessieren:

Industrielle Trends wie IIoT und Digitalisierung setzen immense Datenströme voraus. Doch im Gegensatz zur IT-Security für Büros müssen Fabrikbetreiber auf wesentlich mehr Stolpersteine achten, damit ihre Anlagen nicht schon einfachen Angriffen zum Opfer fallen.‣ weiterlesen

Ab und zu fehlte ein Schlüssel im Kloster der Franziskanerinnen der ewigen Anbetung von Schwäbisch Gmünd. Beim letzten Mal gab das den Impuls, anstatt neue mechanische Zylinder in die rund 220 Türen des Komplexes einzubauen, die alte Technik durch das Bluesmart-System von Winkhaus zu ersetzen.‣ weiterlesen

Mit 100,5 Punkten hält sich das IAB-Arbeitsmarktbarometer im November stabil und liegt weiter im leicht über der neutralen Marke. Auf europäischer Ebene sank der Frühindikator allerdings erneut.‣ weiterlesen

In einer neuen Expertise des Forschungsbeirats Industrie 4.0 untersuchen das FIR an der RWTH Aachen und das Industrie 4.0 Maturity Center den Status-quo und die aktuellen Herausforderungen der deutschen Industrie bei der Nutzung und wirtschaftlichen Verwertung von industriellen Daten und geben Handlungsempfehlungen für Unternehmen, Verbände, Politik und Wissenschaft.‣ weiterlesen

Im Forschungsprojekt FabOS soll eine KI-Bin-Picking-Anwendung entstehen, die ein verbessertes Erkennen, Greifen und definiertes Ablegen von Blechteilen in der Produktion ermöglicht.‣ weiterlesen

Die Digitalisierung des Qualitätsmanagements stellt Unternehmen vor Herausforderungen. Daher haben das Fraunhofer IPT und die FH Südwestfalen im Forschungsvorhaben 'Qbility - Quality 4.0 Capability Determination Model' ein datengetriebenes Reifegradmodell entwickelt, das die Anforderungen eines digitalisierten Qualitätsmanagements bei KMU adressiert.‣ weiterlesen

Das Bundesamt für Sicherheit in der Informationstechnik (BSI) empfiehlt sicherheitsrelevante Patches und Updates so schnell wie möglich, unter Abwägung des jeweiligen Risikos, einzuspielen, auch wenn im professionellen und insbesondere industriellen Umfeld automatisierte Software-Updates mit unerwünschten Einschränkungen der Funktionalität - etwa durch einen Neustart des Systems - verbunden sein können.‣ weiterlesen