Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Digitaler Zwilling im Praxiseinsatz

Nie wieder eine Schraube locker

In einem Use Case in der industriellen Praxis führten gelockerte Schrauben an kritischen Verbindungen dazu, dass Großgeräte zu heiß wurden und in die Notabschaltung gingen. Ein digitaler Zwilling hilft jetzt, diesen Effekt früh zu bemerken.

(Bild: ©Anatoly Stojko/stock.adobe.com)

(Bild: ©Anatoly Stojko/stock.adobe.com)

Bei beanspruchten Großgeräten können sich mit der Zeit die Schraubverbindungen der Starkstromanschlüsse lösen. Für den Gerätehersteller und die Anwender kann dies problematisch werden, da die gelockerten Verbindungen zur Überhitzung des Geräts bis hin zur Notabschaltung sowie zu thermischen Defekten an einzelnen Komponenten führen können. Ungeplante Stillstandszeiten und Reparaturen durch einen Service-Techniker sind die Folge. Die naheliegende Lösung für den Gerätehersteller ist ein System, das bereits vor dem Auftreten erster Schäden darüber informiert, wenn ein Gerät von gelockerten Schraubverbindungen betroffen ist. So können Techniker in vergleichsweise kurzen, kostengünstigen und besser planbaren Service-Einsätzen vor Ort das Problem lösen.

Historische Daten integriert

Der Gerätehersteller beauftragte einen Softwaredienstleister damit, eine solche Lösung zu entwickeln. Dafür stellt er Temperaturdaten zur Verfügung, die Sensoren an den Geräten über mehrere Jahre hinweg gesammelt haben. Die Daten sind ergänzt um dokumentierte Defekte, also um den auffälligen Zeitraum vor dem Defekt sowie den Ausfall- und Reparaturzeitpunkt. Aus diesen historischen Daten sollten mit statistischen Methoden sowie Machine Learning Rückschlüsse und erkennbare Muster hergeleitet werden, die auf Geräte mit gelockerten Schraubverbindungen hindeuten. Zeigt ein Gerät künftig ein ähnliches Temperaturmuster, sollte die Software den Hersteller rechtzeitig warnen. In der Praxis zeigten Methoden wie Random Forest und Zeitreihenanalysen jedoch, dass sich jedes Gerät hinsichtlich der Temperaturentwicklung anders verhält. Zudem verzeichnen die Temperatursensoren in Abhängigkeit ihrer Position unterschiedlich starke Temperaturschwankungen. Konkret erkennbare Muster für lockere Schraubverbindungen konnten anhand der Daten dadurch nicht identifiziert werden.

Mehr Information notwendig

Der Gerätehersteller stellte deshalb weitere Daten in Form von Betriebsdaten, etwa Zeitreihen über ausgeführte Gerätefunktionen, zur Verfügung, die der Softwaredienstleister in Nutzungs- und Pausenzeiten unterteilte. Im Anschluss wurden diesen Zeiten die gemessenen Temperaturen aller Sensoren zugeordnet. Die Verknüpfung von Betriebsdaten und Temperaturdaten bot nun die Möglichkeit, ein einfaches Modell für die Temperaturentwicklung während der Pausenzeiten abzuleiten. Dieses diente als Basis für die Entwicklung eines erweiterten physikalischen Modells der Temperaturentwicklung in Abhängigkeit zu den Betriebsdaten. Ein solcher digitaler Zwilling ermöglicht es, den theoretischen Temperaturverlauf mit dem tatsächlichen zu vergleichen und Abweichungen festzustellen.


Das könnte Sie auch interessieren:

Im Werkzeugmanagement eröffnet das Kennzeichnen von Assets mit Data Matrix Codes die Möglichkeit, Werkzeuge zu tracken und mit ihren Lebenslaufdaten zu verheiraten.‣ weiterlesen

Google Cloud gab kürzlich die Einführung der beiden Lösungen Manufacturing Data Engine und Manufacturing Connect bekannt. Mit den Tools lassen sich Assets einer Fertigungsumgebung vernetzen, Daten verarbeiten und standardisieren.‣ weiterlesen

Virtuelle multicloudfähige Plattformen können in Fertigungsbetrieben das Fundament bilden, um IT-Infrastruktur und Betriebsabläufe zu modernisieren und effizient zu betreiben. Denn das nahtlose Zusammenspiel von Cloud-Anwendungen, Softwarebereitstellung sowie Remote Work lassen sich mit digitalen Plattformen vergleichsweise einfach und global orchestrieren.‣ weiterlesen

Wibu-Systems ist Anwendungspartner im Projekt KoMiK. Im Mai wurde das Projekt abgeschlossen und der Karlsruher Lizensierungsspezialist hat zusammen mit den Projektpartnern aus Wirtschaft und Wissenschaft Empfehlungen zur Auswahl eines digitalen Kooperationssystems erarbeitet, inklusive eines Screening-Tools.‣ weiterlesen

MES-Lösungen verfügen über unterschiedliche Erweiterungsmodule, etwa für das Qualitätsmanagement. Der Ausbau der Basisfunktionen sorgt jedoch oft für Aufwand. Eine Alternative versprechen Cloudlösungen.‣ weiterlesen

Bei ihrer digitalen Transformation adaptieren Fertigungsunternehmen Technologien wie künstliche Intelligenz, Machine Learning und digitale Zwillinge. Cloud Computung hilft, dafür erforderliche Kapazitäten skaliert bereitzustellen.‣ weiterlesen

Mit mehreren neuen Partnern erweitert der Softwareanbieter ZetVisions sein Partnerangebot. Unter anderem sollen Pikon und People Consolidated das Beratungsangebot des Heidelberger Unternehmens ergänzen.‣ weiterlesen

Viele Deep-Learning- und Machine-Vision-Anwendungen stellen hohe Ansprüche an die eingesetzten Industrie-Rechner. Für den Einsatz in diesem Umfeld hat Hardware-Spezialist Spectra die PowerBox 4000AC C621A ins Programm genommen.‣ weiterlesen

Mit Hybrid Cloud-Lösungen wollen Firmen die Vorteile des privaten und öffentlichen Cloud-Betriebs erschließen. Managed Cloud Service Provider sind darin geschult, Fallstricke bei der Cloud-Nutzung solcher Infrastrukturen zu bewältigen.‣ weiterlesen

Per Low-Code-Tool können Anwender Prozesskonfigurationen selbst umsetzen. Im MES-Bereich ist dieser Ansatz noch selten zu finden, doch einige Lösungen gibt es bereits.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige