Anzeige
Anzeige
Anzeige
Anzeige

In drei Schritten zur datengetriebenen Produktion

Beitrag drucken

Bei der Umstellung auf eine datengetriebene Produktion gibt es einige Herausforderungen, die es bereits im Vorfeld zu beachten gilt. Um diese systematisch angehen und meistern zu können, ist eine stufenweise Etablierung deshalb ein sinnvoller Weg.

(Bild: ©Rymden/stock.adobe.com)

Von Augmented Reality über Data Analytics bis Internet of Things verspricht das neue Industriezeitalter eine Vielzahl von Innovationen. Damit diese ihre volle Wirkungskraft entfalten und den Erfolg des Unternehmens auf ein neues Level heben können, bedarf es jedoch eines grundlegenden Wandels – und zwar auf kultureller Ebene genauso wie auf technologischer.

Aufgrund starrer Altsysteme haben die verschiedenen Abteilungen bisher meist nicht mit – sondern eher nebeneinanderher gearbeitet. Die Folge: ein zielgerichteter Informationsaustausch mit Kunden und Geschäftspartnern war schwer, auch der interne Zugriff auf die Daten anderer Teams war technisch selten vorgesehen. Das hat einerseits zu Mehrarbeit geführt, beispielsweise dann, wenn mehrere Mitarbeiter anderer Abteilungen Daten anfragten und diese jedes Mal wieder manuell versendet werden mussten. Andererseits gingen auf diese Weise aber auch viele Einblicke verloren.

Daten zum Fragen stellen

Ist dem Vertrieb beispielsweise bekannt, dass ein bestimmter Kunde jedes Jahr zur gleichen Zeit eine Großbestellung in Auftrag gibt, kann sich die Produktion bereits rechtzeitig darauf vorbereiten oder noch besser: Die Prozesse automatisch vom System organisieren lassen, sodass die Fertigung effizient ablaufen kann. Doch wenn die Produktion nicht weiß, welche Zahlen anderen Abteilungen vorliegen, kann hier auch niemand gezielt danach fragen.

Auf dem Weg zu datengetriebenen Prozessen ist es deshalb essentiell, diese unsichtbaren Barrieren aufzubrechen, um den Datenfluss über alle Abteilungen hinweg möglich zu machen. Die Beachtung der folgenden, drei wesentlichen Schritte kann dabei helfen, dies nachhaltig umzusetzen und tief in der Philosophie des Unternehmens zu verankern:

Schritt 1: Vom Datensilo in die Data Cloud

Bisher wurden häufig zunächst nur die zuständigen Ingenieure informiert, wenn beispielsweise ein Produktionsfehler bekannt wurde. In einem Unternehmen, das bereits auf eine datengetriebene Produktion setzt, kann diese Information jedoch direkt ins System eingespeist und die Fertigung des fehlerhaften Teils unverzüglich und automatisch gestoppt werden.

Wer seine Produktionsprozesse in diesem Maß automatisieren und digitalisieren will, für den führt kein Weg an einer ersten Bestandsaufnahme vorbei. Ohne sich genau darüber im Klaren zu sein, welche Informationen überhaupt verfügbar sind, wo diese abliegen und wer sie für welche Zwecke heranzieht, kann keine solide Grundlage für spätere Erfolge geschaffen werden. Erst, wenn all diese Fragen geklärt sind, steht dem Auszug der Daten aus ihren bisherigen, getrennt voneinander abliegenden Silos nichts mehr im Weg.

Big Data in der Cloud

Die Integration einer Data Cloud könnte hierfür eine Alternative zum traditionellen, lokalen Rechenzentren darstellen, um Speicherung und Analyse großer Datenmengen zu realisieren. Da sie als eine Art Schnittstelle zwischen Infrastructure Clouds wie Microsoft Azure oder Amazons AWS und Application Clouds wie denen von Salesforce oder SAP agieren kann, lassen sich verwendete Rechen- und Speicherressourcen dynamisch hoch und runter skalieren.

Falls nötig, lassen sich innerhalb von Minuten zusätzliche Ressourcen hinzu- oder wieder abbuchen. Das ist besonders dann sinnvoll, wenn beispielsweise am Ende eines jeden Quartals mehr Daten verarbeiten werden müssen, um eine große Analyse durchzuführen, oder wenn die Produktion in der Vorweihnachtszeit auf Hochtouren laufen muss. Die Skalierbarkeit stellt sicher, dass es auch bei Lastspitzen nicht zu größeren Latenzzeiten kommt.

Schritt 2: Auf der sicheren Seite

Sind erstmal verfügbare Daten in einer Cloud-Lösung zusammengeflossen, geht es vor allem darum, die Qualität auf einem hohen Niveau zu halten. Um die besten Ergebnisse zu erzielen, braucht es nun einmal auch die beste Grundlage. Damit das funktionieren kann, ist es unerlässlich, unter allen Mitarbeitern für ein gewisses Maß an Digitalkompetenz zu sorgen. Nur wenn alle verstehen, welch wichtige Rolle Daten für den Erfolg des Unternehmens spielen, kann gemeinsam an einem Strang gezogen werden.

Darüber hinaus ist aber auch die Anstellung einiger Datenexperten äußerst sinnvoll. Die Aufgabe sogenannter Data Stewards besteht in dem Erkennen fehlerhafter Informationen. Ebenso können sie eingreifen, wenn diese ungenau oder veraltet sind oder sie losgelöst vom ursprünglichen Kontext für Analysen genutzt werden. Auch in rechtlicher Hinsicht bedeutet die Arbeit der Data Stewards eine Erleichterung: Regelungen wie die DSGVO oder ePrivacy verlangen, dass sich Daten von der Quelle bis zur Löschung nahtlos zurückverfolgen lassen, ebenso wie Informationen darüber, wer Zugang zu ihnen hat und wie und wo sie genutzt werden. Da die Data Stewards für die Beantwortung all dieser Fragen verantwortlich sind, müssen sich die Mitarbeiter, ebenso wie die Verantwortlichen in den Chefetagen nicht mehr so viele Sorgen um rechtliche Konsequenzen machen und können sich stattdessen auf das Kerngeschäft konzentrieren.

Schritt 3: Neue Möglichkeiten nutzen

Hat das Unternehmen all dies bewältigt, kann es damit beginnen, von der Investition zu profitieren. Es es in der Lage, Informationen in einen größeren Kontext zu setzen und neue Erkenntnisse aus dieser Perspektive zu gewinnen. Werden die Produktionsdaten beispielsweise unter Berücksichtigung der Daten von Vertrieb und Logistikpartnern analysiert, können Schwachstellen oder auch neue Möglichkeiten erkannt werden.

Doch auch ein Blick über den Tellerrand hinaus kann sich lohnen. Unternehmensübergreifende Kooperationen bieten neue Chancen und das in vielerlei Hinsicht. Einerseits können Firmen, die über große Datenpools verfügen, diese mit anderen teilen und sich dadurch eine neue Einnahmequelle eröffnen. Andererseits ermöglicht ihnen die Nutzung extern gesammelter Informationen einen noch umfassenderen Blick und ermöglicht es dadurch, weitere Optimierungspotenziale zu erkennen.

Darüber hinaus ebnet das neuen Geschäftsmodellen den Weg, was vor allem dann ein Vorteil ist, wenn ein Unternehmen in einen neuen Bereich investieren möchte, ohne zunächst selbst große Mengen an Daten sammeln zu müssen. Sowohl das Unternehmenswachstum als auch neue Innovationen lassen sich so vorantreiben.

Schritt für Schritt in eine erfolgreichere Zukunft

Eine Prognose von Gartner besagt, dass noch bis 2022 datengestützte Erkenntnisse in acht von zehn Fällen zu keinerlei Ergebnissen für die Geschäftserfolge führen werden. Die häufigsten Gründe hierfür bestehen in Datensilos sowie fehlendem Fachwissen. Unternehmen, die sich dieser Problematiken bewusst sind, können aktiv gegensteuern. Durch das schrittweise Vorgehen können sie dabei Schnellschüsse verhindern und den Grundpfeiler für all jene Prozesse legen, die es für eine datengetriebene Produktion braucht – auf dass sie bald selbst zu jenen Unternehmen gehören, die anderen eine entscheidende Nasenlänge voraus sind.

 


Das könnte Sie auch interessieren:

Durch die strategischen Partnerschaft zwischen TeamViewer und SAP soll u.a. die AR-Lösung Frontline in das SAP-Angebot integriert werden.‣ weiterlesen

Mit dem QUTAC haben sich zehn Unternehmen in einem Konsortium zusammengeschlossen um industrielle Anwendungen für Quantencomputing zu entwickeln.‣ weiterlesen

Okta hat im Rahmen einer Studie ermittelt, wie Arbeitnehmer künftig arbeiten wollen. Demnach möchten sie ihr Arbeitsmodell zukünftig selbst wählen. Einige glauben jedoch nicht, dass ihr Arbeitgeber ihnen diese Flexibilität gestattet.‣ weiterlesen

Den Kunden genau zu kennen, bringt viele Vorteile mit sich. Angebote werden individueller und Informationen erreichen ihn schneller und passgenauer. Die Customer Journey ist daher ein kritischer Faktor. Ein entsprechendes CRM-System aus der Cloud kann zusätzliche Vorteile in Sachen Kosten und Flexibilität bieten.‣ weiterlesen

Unternehmen sind in Deutschland in unterschiedlichen Registern erfasst, zwischen denen Daten selten oder gar nicht ausgetauscht werden. Mit dem nun beschlossenen Basisregister müssen Unternehmen ihre Daten künftig nur noch einmal melden.‣ weiterlesen

Wer sich mit der elektronischen Verwaltung von Daten und Dokumenten beschäftigt, stößt schnell auf die drei Akronyme DMS, ECM und EIM. Sie scheinen synonym, zumal selbst einige Anbieter solcher Systeme ihre Produkte mal als DMS, ECM- oder EIM-System bezeichnen. Aber es gibt graduelle Unterschiede zwischen einem Dokumentenmanagementsystem, dem Enterprise Content Management und dem Enterprise Information Management.‣ weiterlesen

Am neuen BSI-Stützpunkt in Saarbrücken will das Bundesamt für Sicherheit in der Informationstechnik gemeinsam mit anderen Forschungseinrichtung seine Arbeit im Bereich künstliche Intelligenz ausbauen.‣ weiterlesen

Je nach Firma sind in der Intralogistik unterschiedlich viele und komplexe Aufgaben zu bewältigen. Ob diese Prozesse im MES oder einer digitalen Lagerverwaltung besser aufgehoben sind, bestimmen individuelle Anforderungen und Rahmenbedingungen im Werk.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige