Anzeige
Anzeige
Beitrag drucken

Digitale Zwillinge für Fahrzeuge

Auf das Modell kommt es an

Moderne Fahrzeuge wandeln sich zunehmend zu IoT-Produkten und die Vision eines digitalen Fahrzeugabbildes wird immer greifbarer. Auf dem Weg dahin gilt es technische Hürden zu nehmen, wie die Auswahl des Modells für den digitalen Zwilling eines Fahrzeuges.

Erfahrungen und erworbenes Wissen können über einen Informationsaustausch zwischen den einzelnen digitalen Zwillingen, der durch einen gemeinsamen Data Lake ermöglicht wird, flottenübergreifend genutzt werden. (Bild: MHP Management- und IT-Beratung GmbH)

Erfahrungen und erworbenes Wissen können über einen Informationsaustausch zwischen den einzelnen digitalen Zwillingen, der durch einen gemeinsamen Data Lake ermöglicht wird, flottenübergreifend genutzt werden. (Bild: MHP Management- und IT-Beratung GmbH)

Der technologische Fortschritt ist von zunehmend autonomen Lösungen geprägt, die eingefahrene Unternehmensprozesse zu verbessern helfen. Doch damit wächst die Zahl unabhängig agierender Einheiten, die komplexer, interaktiver und integrativer werden. Diese Einheiten lassen sich schwer kontrollieren, was etwa Betrieb und Wartung, aber auch die Wirtschaftlichkeit, Sicherheit und Nachhaltigkeit betrifft. Diese Herausforderungen adressiert das Konzept des digitalen Zwillings. Er erfasst Merkmale seiner realen Gegenstücke und spiegelt Eigenschaften und Funktionalitäten wider, damit sich Objekte leichter handhaben lassen. Das gilt für den Zwilling einzelner Produkte bis hin zur Modellierung von Maschinen und Anlagen oder einer ganzen Fabrik.

Perspektivwechsel zulassen

Viele IoT- und IIoT-Szenarien lassen sich mit anderen Ansätzen ebenfalls lösen, etwa durch maschinelles Lernen. Der digitale Zwilling kann als Perspektivwechsel verstanden werden. Sein Potenzial kann er vor allem in komplexeren Anwendungsfällen entfalten, wie sie etwa in der Automobilindustrie vorkommen. Je nach Anforderung stehen verschiedene Ansätze mit unterschiedlichen Vor- und Nachteilen zur Verfügung. Gelingt es, digitale Zwillinge und ihre Ensembles – also Gruppen von untereinander kommunizierenden digitalen Zwillingen – zu generalisieren, zu modularisieren und zu standardisieren, lässt sich das Konzept in Zukunft auf viele Branchen und Anwendungsfälle adaptieren.

Der Zwilling des Fahrzeugs

In der Automobilindustrie deckt der Zwilling idealerweise den gesamten Lebenszyklus eines Fahrzeugs ab – von der Produktion einzelner Autos und deren Verkauf bis zum Aftersales und zur Entsorgung bzw. zum Recycling. Der digitale Zwilling enthält zum einen statische Daten zum Fahrzeug – also Angaben zur Software, Elektronik und Mechanik oder zum physikalischen Verhalten. Dazu werden während des Lebenszyklus dynamische Daten gesammelt, wie sie die Fahrzeug-Sensoren liefern. Dieser Ansatz ist nicht nur auf ganze Fahrzeuge anwendbar, sondern kann auch auf für einzelne Komponenten und Baugruppen ausgerollt werden. Es entsteht ein virtuelles Bild eines Objektes, das Planung und Vergleich unterschiedlicher Szenarien ermöglicht. Durch die verarbeiteten Daten sollen Entwicklungsschritte und Fahrzeugbetrieb simuliert und validiert werden, um beispielsweise Fehler früh zu erkennen. Wie individuell und komplex das Fahrzeug ist, spielt für den Zwilling keine Rolle, solange die verfügbare Datenmenge groß genug ist und mit den Merkmalen des realen Objekts korreliert. Je begrenzter die Datenmenge, desto abstrakter wird das virtuelle Modell. Für viele Aufgaben reicht ein gröberes Modell jedoch aus, das einfacher und kostengünstiger zu entwickeln ist.

Genauere Modelle

Um Änderungen am Auto digital abbilden und noch genauere digitale Zwillinge erstellen zu können, gilt es mittels Sensoren und Schnittstellen stetig Informationen auszutauschen. Das Fahrzeug sendet dabei Daten in Echtzeit zum digitalen Zwilling. Diese werden mit aktuellen und historischen Informationen bekannter Objekte abgeglichen. Einzelne Erfahrungswerte können so flottenübergreifend genutzt und zur Verbesserung bzw. Erweiterung zukünftiger Autos genutzt werden. Je mehr Instanzen eines abgebildeten Objekts existieren, desto exakter kann ein digitaler Zwilling implementiert werden. Ein weiteres Beispiel für den digitalen Zwillings in der Automobilindustrie ist die Batterie in Elektroautos. Mit einem digitalen Abbild lässt sich der gesamte Lebenszyklus und die Ladehistorie parallel zur realen Nutzung beobachten. In der Folge können z.B. Empfehlungen für die Nutzung, das Batterie- und Lademanagement entwickelt sowie Hinweise auf das optimale Timing für Reparatur und Wartung abgeleitet werden.

Vergleich zwischen einem mathematischen, einem KI- und einem hybriden Modellierungsansatz. (Bild: MHP Management- und IT-Beratung GmbH)

Vergleich zwischen einem mathematischen, einem KI- und einem hybriden Modellierungsansatz. (Bild: MHP Management- und IT-Beratung GmbH)

Verschiedene Modelle

Für die Implementierung eines digitalen Zwillings können verschiedene Modelltypen gewählt werden. Sie unterscheiden sich vor allem bei ihrer Modellgenauigkeit, der Modelltransparenz und ihrer Komplexität. Welches Modell sich für welchen Anwendungsfall eignet, ist nicht pauschal zu beantworten und muss im Einzelfall bestimmt werden.

Das mathematisch-physikalische Modell bietet die Möglichkeit, auf Basis weniger Lerndaten und fester Regeln Einblicke in Prozesse zu gewinnen. Die Ergebnisse, die durch eine mathematische Funktion oder einen Computeralgorithmus dargestellt werden, sind zuverlässig, verständlich und in der Regel kostengünstig im Betrieb. Allerdings ist die Entwicklung des Modells aufwendiger und die Prozesse, auf die es angewendet werden kann, hängen vom eingebrachten Domänenwissen ab.

Dynamischer und anpassungsfähiger sind KI-Modellierungen. Die Methode ist zudem kostengünstiger in der Entwicklung und erfordert weniger Vorwissen zur spezifischen Aufgabe. Für Anwendungsfälle, zu denen eine große Datenbasis vorliegt, ist sie besonders geeignet. Es gilt, je mehr Daten, desto genauer die Ergebnisse. In der Modellkomplexität, die durch die großen Datenmengen erreicht werden kann, liegt jedoch zugleich der Schwachpunkt. Die Ergebnisse von KI-Modellierungen sind zwar in der Regel sehr genau, die zugrundeliegende Entscheidungslogik bleibt jedoch häufig im Dunkeln und schränkt daher die Ableitung von Management- und Strategieentscheidungen ein Stück weit ein.

Allerdings gibt es auch Kombinationen aus beiden Modelltypen. Dafür wird zunächst ein mathematisches Modell entwickelt, das auf Basis vorhandenen Domänenwissens die Prozesse grob erfasst. Im nächsten Schritt wird dieses Modell durch eine KI erweitert. Die KI korrigiert Abweichungen, schließt Lücken und liefert genauere und transparentere Ergebnisse. Je trainierter das Modell ist, desto genauer die Erkenntnisse. Entwicklungskosten und -aufwand sind dabei leicht erhöht, die Wartungskosten dafür oft geringer.

Prozesse verstehen

Der Erfolg der Implementierung hängt unabhängig vom Modell davon ab, wie tief das Verständnis der zugrundeliegenden Prozesse ist und wie viele Daten, etwa Domänenwissen sowie empirische Daten und Sensordaten vorhanden sind. Dafür muss eine Konnektivität zwischen einzelnen Objekten bestehen und Betrieb bzw. Wartung steuerungsfähig sein. Unternehmen, die Mut zum Experimentieren, ein agiles Mindset, geeignete Hard- und Prozessinfrastrukturen und eine robuste Police in den Bereichen Sustainability und Digital Responsibility mitbringen, sind gerüstet, die Vision des digitalen Zwillings voranzubringen. Im Ergebnis kommen diese Firmen dem Zielbild eines datengetriebenen Unternehmens näher, das mit positiven Kosten-, Zeit- und Nachhaltigkeitseffekten verbunden ist.


Das könnte Sie auch interessieren:

Zerspaner müssen sich intensiv mit hoher Variantenvielfalt, kleinen Losgrößen und langen Rüstzeiten befassen, um wettbewerbsfähig zu fertigen. MES-Software mit Advanced Planning and Scheduling-Funktionalität hilft, die Herausforderungen der Branche anzugehen.‣ weiterlesen

Weltweit steckt der Einsatz von künstlicher Intelligenz (KI) noch in den Kinderschuhen. Die Mehrheit der Unternehmen, die KI einsetzen, experimentieren laut einer Accenture-Untersuchung in diesem Bereich noch. 12 Prozent nutzen die Technologie mit einem KI-Reifegrad, der einen starken Wettbewerbsvorteil bringt, so das Ergebnis der Studie.‣ weiterlesen

Thomas Herrguth verantwortet seit 1. Juli das Deutschlandgeschäft bei VMware. Sein Vorgänger Armin Müller konzentriert sich nun auf seine Rolle als Vice President CEMEA bei VMware.‣ weiterlesen

Bei Predictive-Quality-Anwendungen kann es sich auszahlen, nicht auf die Cloud, sondern auf Edge Computing zu setzen – vor allem dann, wenn es schnell gehen muss, erläutert Data-Science-Spezialist LeanBI.‣ weiterlesen

Der ERP-Auswahlberater Trovarit begleitete Buhmann Systeme bei seiner Software-Neuausrichtung von der Prozessanalyse bis zur Systemauswahl. Ein zentrales Element war der Anforderungskatalog mit 850 Punkten. Im Marktvergleich bot die Software AMS.ERP die höchste Abdeckung - und ihr Hersteller erhielt den Zuschlag.‣ weiterlesen

Gemeinsam wollen Siemens und Nvidia das industrielle Metaverse erschließen. Die Unternehmen wollen dafür ihre Partnerschaft ausbauen und durch die Verknüpfung von Nvidia Omniverse und Siemens Xcelerator realitätsgetreue digitale Zwillinge ermöglichen.‣ weiterlesen

Amazon Web Services hat auf dem AWS Summit in San Francisco drei Services angekündigt, die sich vor allem an produzierende Betriebe richten. Mit AWS IoT TwinMaker können Entwickler digitale Zwillinge etwa von Gebäuden, Fabriken, Industrieanlagen und Produktionslinien erstellen.‣ weiterlesen

Wachstum hatte die Personalarbeit bei Schuler Präzisionstechnik vor Herausforderungen gestellt. Die manuelle Bearbeitung von Vorgängen kostete Zeit und war umständlich. Daher wurde ein digitales Personalmanagement-System auf Basis einer Software für Enterprise Content Management (ECM) aus der Taufe gehoben.‣ weiterlesen

Die Berliner Fraunhofer Institute haben im Auftrag von German Edge Cloud und dem Innovationscluster 5G Berlin eine 5G-Infrastruktur in Betrieb genommen. Diese steht Kunden und Partnern aus Industrie und Forschung für Projekte zur Verfügung.‣ weiterlesen

PTC hat das neunte Major Release der CAD-Software Creo vorgestellt. Das Unternehmen mit Hauptsitz in Boston hat in die Weiterentwicklung der Modellierungsumgebung investiert, um die Benutzerfreundlichkeit und Produktivität zu erhöhen.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige