Anzeige
Anzeige
Anzeige
Beitrag drucken

Systemsimulation

Akustik schon zur
Konzeptphase simuliert

Im Rahmen einer Doktorarbeit bei ARRK Engineering ist ein numerischer Algorithmus entstanden, der mittels Krylov-Unterraum-Verfahren reduzierte FE-Modelle in die multiphysikalische Simulation einbindet. Daraus können mit nur gering erhöhter Rechenzeit detaillierte Aussagen über das Schwingungsverhalten unmittelbar im Zeitbereich sowie erstmals über die Akustik des Systems direkt aus der Systemsimulation abgeleitet werden.

Das Krylov-Unterraum-Verfahren ermöglicht die mathematische Reduktion auch sehr großer linearer Modelle mit zahlreichen Variablen. (Bild: ARRK Engineering)

Das Krylov-Unterraum-Verfahren ermöglicht die mathematische Reduktion auch sehr großer linearer Modelle mit zahlreichen Variablen. (Bild: ARRK Engineering)

„Durch die simulative Überprüfung eines Antriebsstrangs in der Konzeptphase können schon früh relevante Erkenntnisse gewonnen werden. Konkret geht es um die Fragen: Welche Effekte sind durch den Einsatz neuer Komponenten zu erwarten? Wie verhalten sich die einzelnen Komponenten? Welche Bauteilvariante ist besser geeignet?“, sagt Maximilian Zinner, Senior Engineer bei ARRK Engineering und Verfasser der Doktorarbeit. Dadurch kann nicht nur die Testphase verkürzt werden, da sich Experimente virtuell und in kürzerer Zeit durchführen lassen, sondern auch die Kosten für den Prototypenbau werden gesenkt. Hierbei kommen sowohl 3D- als auch 1D-Modelle zum Einsatz. Beide Arten der Simulation haben ihre spezifischen Vorteile für die Konzeption: Während 3D- bzw. FE-Modelle auch lokale Effekte fein auflösen – typischerweise nicht im Zeitbereich – fallen bei 1D-Modellen aufgrund der Abstraktion und damit der geringen Zahl an Freiheitsgraden deutlich kürzere Rechenzeiten an. „Genau dieser hohe Grad an Abstraktion lässt jedoch üblicherweise keine Aussagen zu räumlich aufgelösten, lokalen Effekten wie dem akustischen Verhalten zu“, so Zinner weiter. Wenn nun für aussagekräftigere Ergebnisse die Vorteile beider Modelle vereint werden sollen, ist die Modellordnungsreduktion (MOR) und anschließende Einbindung von FE-Modellen in die 1D-Systemsimulation eine mögliche Vorgehensweise. Eine der meistverwendeten MOR-Techniken ist die Craig-Bampton-Methode. Diese hat allerdings den Nachteil, dass die ausgegebenen Ergebnisse unter Anwendung der in der Literatur verwendeten Parameter Fehler im Bereich von bis zu zehn Prozent aufweisen und sich die Genauigkeit im konkreten Fall kaum schätzen lässt.

Krylov-Unterraum-Verfahren

Weniger üblich ist hingegen das Krylov-Unterraum-Verfahren. Es ermöglicht die mathematische Reduktion auch sehr großer linearer Modelle mit zahlreichen Variablen. „Während die Craig-Bampton-Methode physikalisch basiert ist und deswegen leichter nachvollziehbar, handelt es sich beim Krylov-Unterraum-Verfahren um eine rein mathematische Lösung“, fügt Zinner hinzu. „Das ist wahrscheinlich auch der Grund dafür, weshalb die Craig-Bampton-Methode bisher vorgezogen wurde.“ Doch das Krylov-Unterraum-Verfahren hat den Vorteil, dass es unabhängig vom physikalischen Verhalten des Systems mathematisch operiert und lediglich die Transferfunktion des Systems approximiert wird. Im Rahmen seiner Doktorarbeit bei ARRK Engineering hat Maximilian Zinner nun einen numerischen Algorithmus entwickelt, um mittels des Krylov-Unterraum-Verfahrens FE-Modelle zu reduzieren, diese effizient in Systemsimulationen einzubinden und zusätzlich akustische Effekte direkt in dieser zu betrachten. Hierbei wird die Transferfunktion ähnlich wie bei einer Taylorentwicklung an verschiedenen Frequenzpunkten in geeigneter Länge approximiert. Neben extrem kurzen Rechenzeiten können basierend darauf auch im Vergleich zu anderen Verfahren größere Modelle und geometrisch komplexe Strukturen eingebunden werden. Um jedoch eine hohe Prognosegüte trotz einer geringen Systemgröße zu gewährleisten, ist nicht nur das Unterraum-Verfahren von Bedeutung, sondern auch die Wahl der Reduktionsparameter, da die Transferfunktion darauf basierend approximiert wird. Auch hier hat Zinner eine neue Methode entwickelt, die basierend auf der modalen Dichte des Systems die Lage der Entwicklungspunkte a priori optimal setzt.

Durch die rechnerische Überprüfung eines Antriebsstrangs in der Konzeptionsphase können schon früh relevante Erkenntnisse gewonnen werden. (Bild: ARRK Engineering)

Durch die rechnerische Überprüfung eines Antriebsstrangs in der Konzeptionsphase können schon früh relevante Erkenntnisse gewonnen werden. (Bild: ARRK Engineering)

Größen zweiter Ordnung

„Das war das ursprüngliche Ziel der Doktorarbeit: ein MOR-Verfahren zu ermitteln, das sich zum Einbezug von 3D-Effekten in die Systemsimulation eignet“, merkt Zinner an. „Dabei haben wir jedoch festgestellt, dass sich durch die Verwendung des Krylov-Unterraum-Verfahrens noch viele weitere Vorteile ergeben.“ So ist es beispielsweise möglich, detaillierte Informationen zum Schwingungsverhalten des Systems zu ermitteln, ohne auf die schnellen Rechenzeiten verzichten zu müssen, da Schwingungen in der Struktur automatisch mit simuliert werden. Eine Rücktransformation auf das volle FE-Modell ist so nicht notwendig. „Auf diese Weise können akustische Vergleichsgrößen einfach und ohne Ersatzlastfallbestimmung ermittelt werden. Bisher war dies nur mit einem gewaltigen Aufwand an Ressourcen und Rechenzeit durchführbar“, sagt Zinner. Eine weitere Besonderheit ist, dass die akustische Berechnung mithilfe des reduzierten Modells erstmals ohne wesentlich erhöhten Rechenaufwand direkt basierend auf der multiphysikalischen Abbildung im Zeitbereich in der Systemsimulation erfolgen kann, da alle Domänen in einer Umgebung simuliert werden können. „Im Vergleich mit der Craig-Bampton-Methode ergibt sich darüber hinaus, dass die Prognosegüte deutlich höher ist. Mit dem Krylov-Unterraum-Verfahren liegt die Fehlergröße lediglich im Bereich von 10-6 im betrachteten Frequenzbereich“, argumentiert Zinner. Der Grund dafür ist, dass im Gegensatz zur Craig-Bampton-Methode nicht die Anzahl der Eigenmoden reduziert wird, sondern Krylov-Vektoren die Basis für die Berechnung bilden.

Ergebnisse in der Konzeptphase

„Mit diesem Verfahren können nun der akustische Vergleichswert, die effektiv abgestrahlte Leistung (ERP), sowie andere Werte zweiter Ordnung ohne Aufwand ausgegeben werden“, fasst Zinner zusammen. „Dadurch lassen sich bereits in der Konzeptionsphase erste Untersuchungen zur Akustik durchführen.“ Bevor der erste Prototyp konstruiert wird, ist somit schon bekannt, welche Komponentenvariante im Vergleich zu anderen das leiseste Ergebnis liefert oder was sich durch den Einsatz einer neuen Variante ändern würde. Besonders in Zeiten der E-Mobilität gewinnt dieses Wissen immer mehr an Bedeutung, da durch den leisen Motor die Lärmemissionen der anderen Komponenten deutlicher in den Vordergrund treten. „Diese Erkenntnisse konnten früher erst in der Versuchsphase oder nur durch aufwändige FE-Berechnungen vereinzelter spezifischer Lastfälle ohne die Betrachtung im Zeitbereich gewonnen werden“, erklärt Zinner. „Wenn sich dann Probleme herauskristallisierten, bedeutete das in der Regel einen extremen Zeit- und Ressourcenaufwand, diese zu beheben. Das ist nun nicht mehr nötig.“

Mit dem Krylov-Verfahren kann z.B. die effektiv abgestrahlte Leistung (ERP) ohne Aufwand ausgegeben werden. Dadurch lassen sich bereits in der Konzeptionsphase erste Untersuchungen zur Akustik durchführen. (Bild: ARRK Engineering)

Mit dem Krylov-Verfahren kann z.B. die effektiv abgestrahlte Leistung (ERP) ohne Aufwand ausgegeben werden. Dadurch lassen sich bereits in der Konzeptionsphase erste Untersuchungen zur Akustik durchführen. (Bild: ARRK Engineering)

Zugänglichkeit im Fokus

Im Moment arbeitet das zuständige Team bei ARRK Engineering daran, die Rechenprozesse weiter zu automatisieren. So soll das Verfahren künftig auch von Fachleuten genutzt werden können, die nicht über die entsprechenden mathematischen Kenntnisse verfügen. Außerdem können dadurch die Simulation und somit die Konzeptionsphase noch einmal deutlich beschleunigt werden. „Danach wird es unser Ziel sein, dieses Verfahren auch anderen Disziplinen wie der Thermik zugänglich zu machen“, schließt Zinner. „Doch was konkret alles möglich sein wird, lässt sich zum jetzigen Zeitpunkt noch nicht absehen.“


Das könnte Sie auch interessieren:

Siemens beendet das erste Halbjahr des laufenden Geschäftsjahres mit positiven Neuigkeiten. Umsatzerlöse und Gewinn legen kräftig zu.‣ weiterlesen

Insgesamt 8,2Mrd.€ hat der Maschinen- und Anlagenbau im Jahr 2019 für Forschung und Entwicklung ausgegeben. Auch in der Pandemie behalten F&E-Ausgaben einen hohen Stellenwert.‣ weiterlesen

Seit rund 100 Jahren steht die Automobilindustrie wie keine andere für die Fabrikarbeit am Fließband. Doch jetzt deutet sich eine Technologiewende an. Künftig könnten Fahrerlose Transportfahrzeuge Karosserien, Material und ganze Fahrzeuge durch die Fabrik bewegen. In mehreren Modellfabriken fahren die Automaten bereits durchs Werk.‣ weiterlesen

Immer mehr Anlagen sollen Betriebsdaten im IoT zur Bearbeitung bereitstellen. Mit dem Susietec-Portfolio will Kontron insbesondere den Aufbau von IoT-Lösungen für bestehende Anlagen unterstützen. Der Anbieter von IoT- und Embedded-Computing-Technologie rechnet für 2021 mit mehr als 50 Prozent Wachstum in diesem Geschäftsfeld.‣ weiterlesen

Im März haben die Bestellungen im Maschinen- und Anlagenbau im Vergleich zum Vorjahr deutlich zugelegt. Dabei kamen sowohl aus dem Aus- als auch aus dem Inland positive Signale.‣ weiterlesen

Vor wenigen Jahren galt MES-Software vielen noch als Spezialsoftware mit nur aufwendig erschließbarem Nutzen. Inzwischen ist sie fester Bestandteil der meisten prozessnahen IT-Architekturen in der Prozess- und gerade der Pharmaindustrie. Insbesondere wenn viele Systemfunktionen auf die Prozessführung nach ISA95 entfallen und chargenorientiert produziert wird.‣ weiterlesen

Automobilhersteller agieren bislang erfolgreich in ihren eher geschlossenen Wertschöpfungsketten. Sie verstehen den Markt als Nullsummenspiel. Unternehmen wie Apple haben vorgemacht, dass es auch anders geht: Von offenen Ökosystemen können alle profitieren. Wann öffnet sich die Automobilindustrie für diese Idee?‣ weiterlesen

Mit dem Wechsel von Kathleen Mitford zu Microsoft wird Catherine Kniker zur EVP (Executive Vice Presdient) und Chief Stategy Officer bei PTC ernannt.‣ weiterlesen

Gemeinsam mit CEO Peter Sorowka leitet Carsten Stiller seit 1. April das Softwareunternehmen Cybus. Er verantwortet die Bereiche Marketing und Vertrieb.‣ weiterlesen

Siemens Digital Industries bekommt einen neuen CTO. Dirk Didascalou soll zum 1. September neuer Technikchef werden.‣ weiterlesen

Die Wirtschaft blickt überwiegend optimistisch in die Zukunft: Knapp 40 Prozent der Unternehmen wollen laut der jüngsten Konjunkturumfrage des Instituts der deutschen Wirtschaft 2021 im Vergleich zu 2020 mehr produzieren.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige