Beitrag drucken

Maschinenwartung

Mit künstlicher Intelligenz dem Verschleiß auf der Spur

Forscher am Karlsruher Institut für Technologie (KIT) haben ein System zur vollautomatischen Überwachung von Kugelgewindetrieben in Werkzeugmaschinen entwickelt. Dabei kommt eine direkt in die Mutter des Kugelgewindetriebs integrierte Kamera zum Einsatz. Eine künstliche Intelligenz (KI) überwacht dabei auf Basis der dabei erzeugten Bilddaten kontinuierlich den Verschleiß.

 (Bild: Karlsruher Institut für Technologie)

(Bild: Karlsruher Institut für Technologie)

Die Wartung und der rechtzeitige Tausch von defekten Bauteilen in Werkzeugmaschinen ist ein wichtiger Bestandteil des Produktionsprozesses beim Maschinenbau. Bei Kugelgewindetrieben, wie sie etwa in Drehmaschinen zur Präzisionsführung bei der Herstellung von zylindrischen Bauteilen zum Einsatz kommen, wird der Verschleiß bislang manuell festgestellt. „Die Wartung ist deshalb mit Montagearbeiten verbunden. Die Maschine steht dann erst einmal still“, sagt Professor Jürgen Fleischer vom Institut für Produktionstechnik (wbk) des KIT. „Unser Ansatz basiert dagegen auf der Integration eines intelligenten Kamerasystems direkt in den Kugelgewindetrieb. So kann ein Anwender den Zustand der Spindel kontinuierlich überwachen. Besteht Handlungsbedarf, wird er automatisch informiert.“

KI wertet Bilddaten aus

Das neue System besteht aus einer an der Mutter des Kugelgewindetriebes angebrachten Kamera mit Beleuchtung, die mit einer KI zur Auswertung der Bilddaten kombiniert ist. Während der Bewegung der Mutter auf der Spindel macht sie von jedem Spindelabschnitt Einzelaufnahmen. Dadurch wird jeweils die gesamte Oberfläche der Spindel analysiert.

Präsentation auf der Hannover Messe

Die Kombination von Bilddaten aus dem laufenden Betrieb mit Methoden des maschinellen Lernens ermöglicht Anwendern des Systems eine direkte Bewertung des Zustands der Spindeloberfläche. „Wir haben unseren Algorithmus mit tausenden Aufnahmen trainiert, sodass er nun souverän zwischen Spindeln mit und solchen ohne Defekt unterscheiden kann“, so Tobias Schlagenhauf vom wbk, der an der Entwicklung des Systems mitgearbeitet hat. „Durch eine weitere Auswertung der Bilddaten lässt sich der Verschleiß außerdem genau quantifizieren und interpretieren. So können wir unterscheiden, ob es sich bei einer Verfärbung einfach nur um Schmutz oder aber um schädlichen Lochfraß handelt.“ Beim Training der KI wurden alle denkbaren Formen einer visuell sichtbaren Degeneration berücksichtigt und die Funktionalität des Algorithmus mit neuen, vom Modell noch nie gesehenen Bilddaten validiert. Der Algorithmus eignet sich für alle Anwendungsfälle, bei denen bildbasiert Defekte auf der Oberfläche einer Spindel identifiziert werden sollen und lässt sich auch auf andere Anwendungsfälle übertragen. Das System soll auf der diesjährigen Hannover Messe präsentiert werden.


Das könnte Sie auch interessieren:

Prof. Dr.-Ing. Holger Hanselka, Präsident des Karlsruher Instituts für Technologie (KIT) wird der 11. Präsident der Fraunhofer-Gesellschaft und löst Prof. Dr.-Ing. Reimund Neugebauer nach fast elf Jahren ab.‣ weiterlesen

Christian Thönes, Vorstandsvorsitzender bei DMG Mori, hat am Donnerstag sein Amt niedergelegt. Sein Vertrag wurde im Rahmen einer Aufsichtsratssitzung einvernehmlich beendet. Alfred Geißler wurde vom Aufsichtsrat zum Nachfolger bestellt.‣ weiterlesen

Microsoft feiert 40. Geburtstag in Deutschland und eröffnet ein europäisches Experience Center in München. Es ist eines von vier Experience Centern weltweit.‣ weiterlesen

Expertinnen und Experten der Plattform Lernende Systeme beleuchten in einem neuen Whitepaper, wie es um die Entwicklung europäischer bzw. deutscher KI-Sprachmodelle bestellt ist.‣ weiterlesen

Cyber-physikalische Systeme (CPS), wie etwa Autos oder Produktionsanlagen, stecken voller elektronischer und mechanischer Komponenten, die von Software gesteuert werden. Jedoch ist es eine Herausforderung, die Systemarchitekturen solcher Systeme fortwährend konsistent zu halten. Neue Methoden dafür soll ein Sonderforschungsbereich (SFB) am Karlsruher Institut für Technologie (KIT) entwickeln.‣ weiterlesen

Mit der Akquisition der Pod Group hat G+D bereits 2021 sein Portfolio im IoT-Bereich erweitert. Durch den Erwerb von Mecomo geht das Unternehmen nun einen weiteren Schritt in Richtung IoT-Komplettanbieter im Transport- und Logistikbereich.‣ weiterlesen

Die Grimme-Gruppe produziert individuell konfigurierte Landmaschinen. Was für den Wettbewerb Vorteile bringt, ist allerdings mit großem Aufwand verbunden - so verwaltete Grimme Kundenanfragen lange über ein Excel-Tool. Mit dem Softwareanbieter Slashwhy zusammen wurde dies durch ein webbasiertes Anfragemanagement-Programm abgelöst.‣ weiterlesen

Die Software Moryx hilft der Fertigungssteuerung, Maschinen schnell auf einen neuen Kurs zu bringen oder sie für den nächsten Auftrag anzupassen. Mit seinen einheitlichen Bedienoberflächen und seiner niedrigen Einstiegshürde ist das Tool von Phoenix Contact insbesondere auf den Einsatz in Fertigungen mit der Losgröße 1 ausgerichtet.‣ weiterlesen