Anzeige
Anzeige
Beitrag drucken

Cloud vs. Edge

Predictive Quality: Was, wenn es schnell gehen muss

Bei Predictive-Quality-Anwendungen kann es sich auszahlen, nicht auf die Cloud, sondern auf Edge Computing zu setzen – vor allem dann, wenn es schnell gehen muss, erläutert Data-Science-Spezialist LeanBI.

Bild: ©JustSuper/stock.adobe.com

Bild: ©JustSuper/stock.adobe.com

Predictive-Quality-Anwendungen ermöglichen es, Industrieunternehmen die Qualität ihrer Produkte und Prozesse zu optimieren und somit auch Qualitätsprobleme zu erkennen, die sich kurzfristig anbahnen. Durch schnelles Eingreifen – beispielsweise das Verändern von Prozessparametern oder Maschineneinstellungen – lassen sich große Schäden oft verhindern. Bei besonders zeitkritischen Anwendungsfällen kann es laut LeanBI allerdings von Nachteil sein, Berechnungen – etwa von Machine-Learning-Verfahren – auf einer Cloud-Plattform auszuführen. Dafür gibt es vor allem zwei Gründe, so LeanBI:

  • Unternehmen müssen die Sensormessdaten und Prozessparameter für die Berechnungen erst an die Cloud-Plattform senden, sie schickt die Ergebnisse der Berechnungen dann anschließend wieder zurück. Dadurch entstehen Zeitverzögerungen, die im Extremfall zu groß sein können.
  • Der Datenaustausch mit der Cloud-Plattform erfordert eine stabile Internetverbindung. Diese können Unternehmen nur schwer selbst gewährleisten, beispielsweise wenn sich Fertigungshallen etwa an entlegenen Orten befinden. Unternehmen sind so dem Risiko eines Verbindungsausfalls ausgesetzt.

Diese Probleme können Unternehmen vermeiden, wenn sie die analytischen Berechnungen an der Edge ausführen – also direkt bei den Maschinen und Anlagen selbst. Zwar steht an der Edge nicht dieselbe Rechenleistung zur Verfügung wie in der Cloud, laut LeanBI gibt es aber mehrere Möglichkeiten, die Machine-Learning-Modelle so zu optimieren, dass sie weniger Performance benötigen und dadurch auf Edge-Systemen eingesetzt werden können:

  • Durch sogenanntes Pruning lässt sich die Komplexität der Eingangsparameter senken.
  • Mit Frameworks wie Learn2Compress von Google können die Layer von Deep-Learning-Modellen in ihrer Breite und Tiefe reduziert werden.
  • Üblicherweise sind Machine-Learning-Modelle in der Programmiersprache Python geschrieben. Mit Compilern lassen sie sich in Sprachen wie C# übersetzen, die weniger Prozessorleistung benötigen.

Die Edge hat gegenüber der Cloud aber auch Nachteile, etwa in Sachen Effizienz. So benötigt die Cloud durch ihren Lastenausgleich in Summe oft weniger Rechenkapazität als die Edge – und ist dann kostengünstiger.


Das könnte Sie auch interessieren:

Ab und zu fehlte ein Schlüssel im Kloster der Franziskanerinnen der ewigen Anbetung von Schwäbisch Gmünd. Beim letzten Mal gab das den Impuls, anstatt neue mechanische Zylinder in die rund 220 Türen des Komplexes einzubauen, die alte Technik durch das Bluesmart-System von Winkhaus zu ersetzen.‣ weiterlesen

Mit 100,5 Punkten hält sich das IAB-Arbeitsmarktbarometer im November stabil und liegt weiter im leicht über der neutralen Marke. Auf europäischer Ebene sank der Frühindikator allerdings erneut.‣ weiterlesen

In einer neuen Expertise des Forschungsbeirats Industrie 4.0 untersuchen das FIR an der RWTH Aachen und das Industrie 4.0 Maturity Center den Status-quo und die aktuellen Herausforderungen der deutschen Industrie bei der Nutzung und wirtschaftlichen Verwertung von industriellen Daten und geben Handlungsempfehlungen für Unternehmen, Verbände, Politik und Wissenschaft.‣ weiterlesen

Im Forschungsprojekt FabOS soll eine KI-Bin-Picking-Anwendung entstehen, die ein verbessertes Erkennen, Greifen und definiertes Ablegen von Blechteilen in der Produktion ermöglicht.‣ weiterlesen

Die Digitalisierung des Qualitätsmanagements stellt Unternehmen vor Herausforderungen. Daher haben das Fraunhofer IPT und die FH Südwestfalen im Forschungsvorhaben 'Qbility - Quality 4.0 Capability Determination Model' ein datengetriebenes Reifegradmodell entwickelt, das die Anforderungen eines digitalisierten Qualitätsmanagements bei KMU adressiert.‣ weiterlesen

Das Bundesamt für Sicherheit in der Informationstechnik (BSI) empfiehlt sicherheitsrelevante Patches und Updates so schnell wie möglich, unter Abwägung des jeweiligen Risikos, einzuspielen, auch wenn im professionellen und insbesondere industriellen Umfeld automatisierte Software-Updates mit unerwünschten Einschränkungen der Funktionalität - etwa durch einen Neustart des Systems - verbunden sein können.‣ weiterlesen

Im Gegensatz zu anderen Cyberangriffen bieten Attacken mit Ransomware auf den ersten Blick einen einfachen Ausweg: die Zahlung des geforderten Lösegelds.‣ weiterlesen

Nach 84,5 Punkten im Oktober kletterte der Ifo-Geschäftsklimaindex im November auf 86,3 Punkte. Die Unternehmen blicken demnach weniger pessimistisch auf die nächsten Monate.‣ weiterlesen

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.‣ weiterlesen

Edge Management, Digital Twin und Data Spaces bilden die Schwerpunkte einer Zusammenarbeit zwischen der Open Industry 4.0 Alliance und dem Labs Network Industrie 4.0.‣ weiterlesen