Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Lernalgorithmus E-prop

Energieeffizient lernen

Ein Forschungsteam an der Technischen Universität Graz hat die KI-Lernmethode E-prop entwickelt, mit der Hardware-Implementierungen von künstlicher Intelligenz energieeffizienter gestaltet werden können.

(Bild: TU Graz)

Der hohe Energieverbrauch beim Lernen von künstlichen neuronalen Netzwerken ist eine große Hürde für den breiten Einsatz künstlicher Intelligenz (KI), vor allem bei mobilen Anwendungen. Ein Ansatz, um sich diesem Problem zu nähern ist, von Erkenntnissen über das menschliche Gehirn zu lernen: Dieses verfügt über immense Rechenleistung, braucht mit 20 Watt aber nur ein Millionstel von dessen Energie. Verantwortlich dafür ist unter anderem die effiziente Informationsweitergabe zwischen den Neuronen im Gehirn: Diese senden dazu kurze, elektrische Impulse (Spikes) an andere Neuronen – um Energie zu sparen aber nur so oft, wie unbedingt notwendig. Diese Funktionsweise hat sich ein Team der TU Graz um die Informatiker Wolfgang Maass und Robert Legenstein bei der Entwicklung des maschinellen Lernalgorithmus E-prop (kurz für e-propagation) zu eigen gemacht. Die Arbeitsgruppe des Instituts für Grundlagen der Informationsverarbeitung, nutzen in ihrem Modell Spikes zur Kommunikation zwischen Neuronen in einem künstlichen neuronalen Netz. Die Spikes werden nur dann aktiv, wenn sie für die Informationsverarbeitung im Netzwerk gebraucht werden. Das Lernen ist für solche wenig aktiven Netzwerke eine besondere Herausforderung, da es längere Beobachtungen braucht um zu ermitteln, welche Neuronenverbindungen die Netzwerkleistung verbessern.

Dezentrale Methode

Bisherige Methoden erzielten zu geringe Lernerfolge oder erforderten enormen Speicherplatz. E-prop löst nun dieses Problem mittels einer vom Gehirn abgeschauten dezentralen Methode, bei der jedes Neuron in einer sogenannten E-trace (eligibility trace; dt. Ereignisspur) dokumentiert, wann seine Verbindungen benutzt wurden. Die Methode ist ähnlich leistungsfähig wie bekannte andere Lernmethoden. Bei vielen der derzeit eingesetzten Maschine-Learning-Techniken werden alle Netzwerkaktivitäten zentral und offline gespeichert, um alle paar Schritte nachvollziehen zu können, wie die Verbindungen während der Berechnungen benutzt wurden. Dies erfordert aber einen ständigen Datentransfer zwischen dem Speicher und den Prozessoren — eine der Hauptursachen für den zu großen Energieverbrauch gegenwärtiger KI-Implementationen. E-prop hingegen funktioniert vollkommen online und erfordert auch im realen Betrieb keinen separaten Speicher.

Nicht über die Cloud gehen

Maass und Legenstein hoffen, dass der Algorithmus die Entwicklung einer neuen Generation von mobilen lernfähigen Rechensystemen vorantreibt, die nicht mehr programmiert werden müssen, sondern nach dem Vorbild des menschlichen Gehirns lernen und sich dadurch an laufend neue Anforderungen anpassen. Ziel ist es, diese Rechensysteme nicht mehr energieintensiv ausschließlich über eine Cloud lernen zu lassen, sondern den größeren Teil der Lernfähigkeit effizient in mobile Hardware-Komponenten einzubauen und dadurch Energie zu sparen. Erste Schritte, E-prop in die Anwendung zu bringen, wurden bereits gemacht: So arbeitet das Team der TU Graz gemeinsam mit der Advanced Processor Technologies Research Group (APT) der Universität Manchester im Human Brain Projekt daran E-prop in das dort entwickelte neuromorphe Spinnaker-System einzubauen. Gleichzeitig arbeitet die TU Graz gemeinsam mit Intel daran, den Algorithmus in die nächsten Version von Intels neuromorphen Chip Loihi zu integrieren.


Das könnte Sie auch interessieren:

Die Steigerung von Produktivität und Effektivität in der Industrie und eine ressourcenschonende Nachhaltigkeit stehen sich nicht unversöhnlich gegenüber. Wirtschaftliche Ziele und ökologische Verantwortung unterstützen sich gegenseitig - nur ist das noch nicht überall erkannt.‣ weiterlesen

Die 16. FMB – Zuliefermesse Maschinenbau findet vom 10. bis 12. November 2021 im Messezentrum Bad Salzuflen statt. Zu den Topthemen kürte Veranstalter Easyfairs die Oberflächentechnik und Digitalisierung.‣ weiterlesen

Produktionsunternehmen sollen mit den neuen IoTmaxx-Mobilfunk-Gateways Maschinendaten besonders schnell in die AnyViz-Cloud übertragen können.‣ weiterlesen

Self-Service-Technologie, digitale Assistenten, künstliche Intelligenz - die Digitalwerkzeuge fürs Kundenbeziehungsmanagement werden immer ausgefeilter. Sind CRM- und ERP-System gut integriert, lassen sich im Sinn des xRM-Ansatzes auch leicht die Beziehungen zu Geschäftspartnern IT-gestützt pflegen.‣ weiterlesen

Vor allem KMU befürchten häufig, bei der IT-gestützten Prozessoptimierung im Vergleich zu Großkonzernen nicht mithalten zu können. Die beiden Technologieprojekte IIP Ecosphere und FabOS, die im Rahmen des KI-Innovationswettbewerbs vom BMWi gefördert werden, wollen diesen Firmen den Zugang zu KI-Anwendungen erleichtern.‣ weiterlesen

Emerson hat die Einführung der Software Plantweb Optics Data Lake bekanntgegeben. Die Datenmanagement-Lösung identifiziert, erfasst und kontextualisiert unterschiedliche Daten in großem Maßstab entweder vor Ort in industriellen Anlagen oder mithilfe von Cloud-Technologie.‣ weiterlesen

Im September 2021 erscheint die Richtlinie VDI/VDE 2185 Blatt 2 'Funkgestützte Kommunikation in der Automatisierungstechnik - Koexistenzmanagement von Funksystemen'. Wenn unterschiedliche Funksysteme bei Automatisierungsaufgaben unterstützen, ist mit einer gegenseitigen Beeinflussung der Systeme zu rechnen.‣ weiterlesen

Klare Sicht auf das Werksgeschehen und die Rückverfolgbarkeit von Produkten und Prozessen sind zunehmend wichtige Erfolgsfaktoren. Mit dem MES Valeris will WSW Software gerade mittelständischen Fertigern helfen, diese Ziele zu erreichen. Das System soll schnell und günstig einsatzfähig sein, konfiguriert wird es in Eigenregie.‣ weiterlesen

Unternehmen verwalten heute mehr als zehn Mal so große Datenmengen wie noch vor fünf Jahren. Dabei befürchteten 62 % der Befragten in einer aktuellen Untersuchung von Dell Technologies, ihre Maßnahmen zur Datensicherung könnten nicht ausreichend vor Malware-Attacken schützen. 74 % der Umfrageteilnehmer gaben zudem an, dass mit der steigenden Anzahl an Home-Office-Mitarbeitern das Risiko von Datenverlust ansteige.‣ weiterlesen

Der MES-Anbieter Proxia Software kapselt Funktionen seiner Software, um Anwendern mehr Flexibilität beim Cloud-Betrieb ihres Produktionssteuerungssystems zu ermöglichen. Eine Datenvorverarbeitung im sogenannten Fog Layer soll durch eine geringere Anzahl an Transaktionen für mehr IT-Sicherheit und reduzierte Transaktionskosten sorgen.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige