Anzeige
Anzeige
Anzeige
Beitrag drucken

Teil 10 der Serie ‚Autonome Systeme‘ – Werte und Ethik

„Wir müssen den Maschinen Meta-Regeln mitgeben“

KI-basierte Systeme und Maschinen werden immer autonomer, selbstständiger und intelligenter. Ob und wie ist es zu schaffen, dass sie auf Dauer menschlichen Werten und Regeln folgen? Dr. Kurt D. Bettenhausen, Vorsitzender des interdisziplinären Gremiums Digitale Transformation im VDI und Vorstandsmitglied der VDI/VDE-GMA, spricht im zehnten Teil unserer Serie Autonome Systeme mit dem VDI.

 (Bild: © matiasdelcarmine | stock.adobe.com)

(Bild: © matiasdelcarmine | stock.adobe.com)

Die Leistungsfähigkeit autonomer Systeme nimmt zu. Wie stellen Sie sicher, dass diese Systeme auf Dauer die geplanten Aufgaben übernehmen und nicht darüber hinausgehen, also beherrschbar bleiben?

Dr. Kurt D. Bettenhausen: Lassen Sie uns für einen Moment von der Annahme ausgehen, dass die Leistungsfähigkeit tatsächlich in einen Bereich steigt, in dem autonome Systeme sich selbständig über ihren eigentlichen Bestimmungszweck hinaus weiterentwickeln können. Grundsätzlich bleiben drei Möglichkeiten: Dem Erbauer des autonomen Systems ethische Regeln für das Design der Systeme zu geben, das System selbst zu reglementieren oder dem System Regeln mitzugeben, die seine Weiterentwicklung lenken.

Welche dieser drei Möglichkeiten halten Sie langfristig für die wirksamste?

Bettenhausen: Solange wir über Systeme reden, die nicht KI-basiert sind, ist es vollkommen ausreichend, wenn die Personen, die sie konstruieren und programmieren, ethischen Werten folgen. Das System selbst reglementieren zu wollen, wird sich auf Dauer als Hase-und-Igel-Spiel entwickeln, bei dem die Regeln und die Regelnden mit hoher Wahrscheinlichkeit nicht mit dem technologischen Fortschritt werden mithalten können. In dem Moment jedoch, in dem das eigenständige Lernen eines Systems ins Spiel kommt, z.B. über Methoden wie Deep Learning, müssen wir uns über übergeordnete, sogenannte Meta-Regeln Gedanken machen. Und das müssen wir tun, bevor wir die Maschinen in unsere Umwelt lassen. Denken Sie beispielsweise nur an den Chatbot, der innerhalb eines einzigen Tages rassistische Propaganda verbreitete oder an die Chatbots, die in kürzester Zeit eine für Menschen unverständliche Sprache entwickelten. Wir dürfen nicht die Kontrolle verlieren und wir müssen den Maschinen zugleich Meta-Regeln mitgeben, die sie zwingend befolgen müssen.

Deep-Learning-Systeme können wir nicht mehr kontrollieren?

Bettenhausen: Zumindest können wir nicht zu jedem Zeitpunkt schnell genug vorhersagen, was genau sie lernen und gegebenenfalls in Echtzeit anwenden werden. Bei Maschinen, die aus der immer größer werdenden Menge an Daten Wissen und über deren Analyse Erkenntnisse ziehen, können wir nicht sagen, was sie in einem Jahr lernen werden. Sie tun dies selbstverständlich nur im vorgegebenen Bereich. Ein smarter Staubsauger wird, so intelligent er auch werden mag, morgen nicht Ihre Spülmaschine ausräumen. Aber bleiben wir bei diesem Beispiel: Wenn der intelligente Staubsauger erkennt, dass es besonders der Hund ist, der den größten Dreck verursacht, muss er einen effizienten Weg finden, Haare und Dreck schnell zu entfernen. Er darf nicht auf die Idee kommen, den Hund rauszuschmeißen und ihm den Eingang zu verwehren oder ihn vorsorglich komplett kahl zu scheren – oder eben Schlimmeres. Er braucht also übergeordnete Regeln. Als Ausgangsbasis können die bekannten Robotergesetze von Asimov herhalten. Gerade das zweite Gesetz, der Roboter muss den menschlichen Befehlen gehorchen, ist angesichts von Kriegen und Terroranschlägen wohl differenzierter zu betrachten. Aber sie sind ein erster Schritt und eben schon 75 Jahre alt.

Der Ansatz, Maschinen ethische Grundlagen beizubringen, ist also nicht neu – was ist heute anders?

Bettenhausen: Einer der wichtigsten Unterschiede zwischen den humanoiden Robotern, an die Asimov und seine Kollegen vor 75 Jahren dachten, und heutigen Maschinen, die mit starker KI ausgestattet werden (können), ist, dass die damaligen Maschinen nicht vernetzt waren – weder untereinander, noch über das Internet. Sie konnten so weder eine Schwarmintelligenz entwickeln, noch von den riesigen Datenmengen profitieren, über die wir heute verfügen – und die stündlich mehr werden. Zudem operieren heutige Smarte Maschinen bei vielen ihrer Entscheidungen auf Basis von Daten, die sie erhalten und damit auf der Basis von Wahrscheinlichkeiten. Sie können dazu lernen und müssen diese Erfahrung weder selbst gemacht haben, noch muss die Erfahrung zwingend von einer anderen Maschine real erlebt worden sein, sondern kann als Simulation vorgegeben werden. Hierüber können wir beispielsweise steuernd eingreifen und das Lernen, auch zu einem späteren Zeitpunkt, nachdem die Maschinen sich bereits im Betrieb befinden, in eine bestimmte Richtung lenken – übrigens positiv wie negativ, wenn die zugehörigen Menschen nicht ethischen Grundsätzen folgen. Es ist also komplexer geworden und eine einfache Regel wie die ‚Du sollst nicht töten‘ reicht schon lange nicht mehr aus. Was geschieht beispielsweise, wenn die Maschine, indem sie wenige Menschen opfert, viele Menschen retten kann? Nicht umsonst haben im April EU-Experten ethische Richtlinien für künstliche Intelligenz vorgelegt. Herausgekommen sind sieben Regeln, die es jetzt in der Praxis zu testen gilt. Das erste Asimov’sche Gesetz („Ein Roboter darf einem menschlichen Wesen keinen Schaden zufügen oder durch Untätigkeit zulassen, dass einem menschlichen Wesen Schaden zugefügt wird.“) fehlt hier leider. Auch finden sich unter den Regeln viele Konjunktive. Hier behaupte ich, dass sie Menschen wie Maschinen genauso als Konjunktiv, als eine Möglichkeit, verstehen werden.

Die zweite ethische Anforderung beschäftigt sich mit Vertrauen in KI-basierte Systeme, die dritte mit Datenkontrolle – über Ethik von Maschinen steht hier nichts. Wie schaffen wir tatsächlich Vertrauen in autonome Systeme?

Bettenhausen: Vertrauen baut sich dann auf, wenn Interaktion stattfindet – wiederholt und berechenbar bzw. vorhersagbar. Zugegeben – mit einem Parkautomaten interagieren Sie auch, aber da dieser nicht lernen und vor allem nicht individuell reagieren kann, werden Sie auch kein Vertrauen aufbauen können. Eine weitere Grundvoraussetzung ist also eine Reaktion und die Möglichkeit der Adaption der Maschine an den Menschen. Idealerweise passt sich die Maschine durch die Möglichkeiten von KI individuell an ihr Gegenüber an. Das entspricht am ehesten dem sozialen Wesen Mensch. Denken Sie nur an Ihr Smartphone: Wenn Ihnen das wegen eines bevorstehenden Termins vorschlägt, früher als geplant loszufahren, weil ein Stau auf der Strecke für massive Verzögerungen sorgt, so werden Sie dieser Empfehlung möglicherweise schon heute folgen. Ähnliches gilt z.B. auch für Streckenvorschläge für Wanderungen am Wochenende, weil Ihr Smartphone, oder eine von Ihnen angelegte App, weiß, dass Sie gerne Natur fotografieren. Auch hier haben Sie wahrscheinlich ein größeres Vertrauen. Der Grund: Sie haben diese Maschine – in diesem Fall das Smartphone – selbst gemäß Ihren Bedürfnissen individualisiert. Mit der heutigen KI ist es möglich, dass Maschinen sich sehr schnell an ihr Gegenüber anpassen. Das wird das Vertrauen stärken. Und dann brauchen wir ethische Grundlagen für die Maschinen als übergeordnete Regeln und zusätzlich moderne ethische Grundsätze für deren Entwickler und Programmierer.

Genau deshalb überarbeitet der VDI die ethischen Grundlagen für Ingenieure.

Bettenhausen: Lassen Sie uns mit dieser weiteren Grundlage für Ingenieure optimistisch in eine Zukunft schauen, in der Roboter weit mehr leisten als die DDD-Jobs (Dull, Dirty and Dangerous), sondern uns sinnvoll im privaten wie beruflichen Alltag unterstützen.


Zehn Fragen zu KI und autonomen Systemen

Künstliche Intelligenz (KI) und autonome Systeme sind in vielen Bereichen der Industrie, der Logistik und des Verkehrs untrennbar miteinander verknüpft. Allein und in Kombination bergen sie große wirtschaftliche Potenziale, bringen aber auch Risiken mit sich. Die Arbeitsgruppe ‚Autonome Systeme‘ der VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (VDI/VDE-GMA) hat zehn Fragen zusammengetragen, die es zu beantworten gilt, um KI wirtschaftlich erfolgreich zu machen:
  1. Wie können wir das autonome System beherrschen?
  2. Wie autonom soll das autonome System für uns sein?
  3. Wie machen wir das autonome System autonom?
  4. Wie nachvollziehbar muss das Verhalten eines autonomen Systems sein?
  5. Wie kann man autonome Systeme vergleichen?
  6. Wie zuverlässig ist das lernende autonome System?
  7. Wie effizient ist das autonome System?
  8. Wie sicher ist das autonome System?
  9. Wo sind die Grenzen des autonomen Systems?
  10.  Welchen Werten folgt das autonome System?


Das könnte Sie auch interessieren:

Autoneum CZ verfolgt das Ziel, alle Logistikprozesse zu digitalisieren. Auf dem Weg dorthin wurde im Jahr 2019 die Produktionsplanung digitalisiert. Die hohen Anforderungen erfüllt das Advanced Planning and Scheduling-System von Asprova.‣ weiterlesen

Das Ludwigshafener Softwarehaus Fasihi hat ein digitales Assistenzsystem ins Programm genommen. Es unterstützt Mitarbeiter in der Produktion durch die Anzeige von Dokumenten wie Handbücher, Anleitungen, Betriebs- und Verfahrensanweisungen oder auch Informationen aus Modulen wie einer Gefahrstoffdatenbank.‣ weiterlesen

Die FOG Software Group will mit der Übernahme von Facton ihr Portfolio an Softwarelösungen für die intelligente Fertigung ausbauen.‣ weiterlesen

Eplan startet mit der Gründung eines neuen Partnernetzwerks in das neue Jahr. Durch den Austausch der Partner soll unter anderem die Integration unterschiedlicher Systeme vereinfacht werden.‣ weiterlesen

Am Unternehmenshauptsitz von Dyer Engineering laufen bis zu 1.000 Aufträge gleichzeitig ab, bis zu 5.000 Komponenten sind dafür im Umlauf. Wer da auf technische Unterstützung verzichtet, verliert schnell den Überblick und riskiert Stillstände und Zusatzaufwand. Gelöst hat die Firma dieses Problem mit einer Asset-Tracking-Lösung auf Bluetooth-Basis.‣ weiterlesen

Mit der Übernahme des US-Unternehmens Diversified Automation will Leadec seine Präsenz in Nordamerika stärken.‣ weiterlesen

Wer bei der SMS Group in Hilchenbach wirklich alle Maschinendaten in die MES-Software integrieren will, muss bis zu 30 Jahre alte Steuerungen zum Reden bringen. Wie das geht, wussten die Mitarbeiter des Metallspezialisten zwar. Aus Zeitgründen erhielt jedoch der Dienstleister Schmid Engineering den Auftrag, die 55 Maschinen ans MES anzuschließen.‣ weiterlesen

Campus-Netze sind in Deutschland zur Zeit der vielversprechendste Ansatz, wenn es um den industriellen Einsatz von 5G-Funktechnik geht. Denn erstmals erlaubt die Bundesnetzagentur auch Unternehmen außerhalb der Telekommunikationsbranche, Funkfrequenzen zu buchen. Doch welche Konzepte für den Aufbau eines Campus-Netzes gibt es?‣ weiterlesen

Um den Robotereinsatz bei kleineren und mittleren Unternehmen zu fördern, wurde Ende des vergangenen Jahres der Deutsche Robotik Verband gegründet.‣ weiterlesen

Auf 2021 blicken die Entscheider in der Branche mit einer Mischung aus Zurückhaltung und leichtem Optimismus. Dies geht aus dem aktuellen Maschinenbau-Barometer von PwC hervor.‣ weiterlesen

Die SmartFaxtory KL arbeitet an der Realisierung an einem Shared Production-Ansatz und bildet so die Grundlage für das europäische Infrastrukturprojekt GAIA-X.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige