Anzeige
Anzeige
Beitrag drucken

MES mit eingebauter künstlicher Intelligenz

Von der Aggregation zur Interpretation

Da Manufacturing Execution Systeme regelbasiert arbeiten, verlangen Veränderungen im Produktionsablauf nach einer Neuprogrammierung des Systems. Mit künstlicher Intelligenz wird dies ein Stück weit autonomer. Der Mensch bleibt jedoch die letzte Instanz.

(Bild: ©Kirill/stock.adobe.com)

(Bild: ©Kirill/stock.adobe.com)

Die Anforderungen an Flexibilität und Reaktionsgeschwindigkeit in der Fertigung steigen. Die Variantenvielfalt nimmt zu, während sich die Produktion in Richtung Losgröße 1 entwickelt. Lieferzeiten müssen reduziert werden, wohingegen Lieferketten immer verzweigter werden. Das macht auch die Produktionsplanung komplexer. KI-basierte MES-Lösungen können die zunehmende Volatilität in der Produktion auffangen, indem die erhobenen Daten nicht mehr nur aggregiert, sondern mit künstlicher Intelligenz auch interpretiert werden können. Ein MES aggregiert Daten und erzeugt einen homogenen Datenpool. Die Daten können dann als Kennzahlen visualisiert werden. Durch die Auswertung historischer Daten wird z.B. die Abweichung von einem Normwert deutlich, ihre Ursachen hingegen können mit herkömmlichen Analysemethoden nicht identifiziert werden. Ein manueller Eingriff wird notwendig, wenn in Zukunft die festgestellte Abweichung vermieden werden soll. Dieser Eingriff wird jedoch immer wieder notwendig, wenn die einmal identifizierte Abweichung erneut auftritt. Durch die Nachjustage des MES wird die Abweichung unterbunden. Je komplexer ein Produktionssystem jedoch ist, desto schwieriger werden manuelle Interventionen, da ihre Folgen nicht mehr absehbar sind. Das gilt auch für Nachjustagen. Letztendlich lässt sich nicht mehr zurückverfolgen, ob neu auftretende Abweichungen im Zusammenhang mit aktuell vorgenommenen Änderungen stehen oder gänzliche andere Ursachen haben. Weitere Eingriffe werden notwendig – ein Teufelskreis.

Das System lernt

Bei KI-basierten MES entfallen solche Eingriffe zumeist, wenn sie die Daten interpretieren und bei Bedarf auf das Ergebnis reagieren können. Die Grundlage dafür ist Machine Learning. Dabei erkennt die KI wiederkehrende Muster im Datenpool und kann aufgrund des im System vorhandenen Wissens auf diese Muster reagieren. Die Reaktion selbst wird als neues Wissen im System gespeichert – das System lernt. In der Praxis erfolgt die KI-Reaktion aber (noch) nicht autonom durch das System, sondern durch den Mitarbeiter. Dieser entscheidet, wie er auf den Vorschlag der KI reagiert. Auf diese Weise wird auch implizites Wissen, also Arbeitserfahrung, Teil des KI-basierten MES. Dies wirkt auch dem Silo-Denken entgegen. Werden KI-gestützte Systeme über das gesamte Unternehmen ausgebreitet, steht das implizite Wissen bereichsübergreifend zur Verfügung. Scheiden Mitarbeiter aus dem Unternehmen aus, bleibt ihr Wissen erhalten.

Einsatzbereiche

Insbesondere in der Prozessüberwachung, -optimierung und -steuerung kann die KI ihr Potenzial entfalten. Durch vorausschauende Wartung (Predictive Maintenance) werden Verschleiß und Beschädigungen frühzeitig erkannt, sodass Maschinenausfälle verhindert werden. Viele Produktionsplanungs- und -steuerungssysteme stoßen bei steigender Variantenvielfalt und immer kürzeren Produktionszeiten an Grenzen. Mithilfe von KI kann für eine variantenabhängige Reihenfolgeplanung eine Prognose für unterschiedliche Produktionsszenarien erstellt werden, um den optimalen Produktionsablauf zu identifizieren. So lässt sich mit KI-gestützten MES-Lösungen auch in Produktionsbereichen, die bereits durch einen hohen Automatisierungsgrad gekennzeichnet sind, die Produktivität erhöhen.

Datenqualität

Die grundlegende Voraussetzung für den Einsatz von künstlicher Intelligenz ist eine hohe Qualität der Trainingsdaten. Ist diese Qualtität nicht gegeben, führt dies zu schlechten Ergebnissen. Auch mangelt es oft an Knowhow und Erfahrung, wenn es darum geht, eigene KI-Lösungen zu entwickeln. Um den Wissenstransfer zu verbessern, müssen Wissenschaft und Industrie enger miteinander verzahnt werden.

Querschnittsanker

Ein Manufacturing Execution System nimmt in produzierenden Unternehmen oft eine Position ein, an der besonders viele Daten zusammenkommen. Wenn KI-basierte MES-Lösungen eine große Zahl an betrieblichen Anwendungen abdecken und demnach über einen hohen Querschnittscharakter verfügen, lassen sich eventuell von dieser Ebene heraus die KI-Systeme auch auf andere Unternehmensbereiche ausweiten.


Das könnte Sie auch interessieren:

Version 9 des ERP-Systems Proalpha ist auf dem Markt. Das Release soll als Wegmarke des Software-Herstellers zum Anbieter einer Technologieplattform gelten, die künftig die Lösungen anderer Softwarefirmen der Unternehmensgruppe verknüpft. ‣ weiterlesen

Um der steigenden Nachfrage nach Kunststoff-Hybrid-Bauteilen gewachsen zu sein, setzt der Automobilzulieferer KE seit September 2021 auf eine verkettete Anlage mit zwei Spritzgießmaschinen und sechs Robotern. Dadurch ist es gelungen, den Output signifikant zu steigern.‣ weiterlesen

Zerspaner müssen sich intensiv mit hoher Variantenvielfalt, kleinen Losgrößen und langen Rüstzeiten befassen, um wettbewerbsfähig zu fertigen. MES-Software mit Advanced Planning and Scheduling-Funktionalität hilft, die Herausforderungen der Branche anzugehen.‣ weiterlesen

Weltweit steckt der Einsatz von künstlicher Intelligenz (KI) noch in den Kinderschuhen. Die Mehrheit der Unternehmen, die KI einsetzen, experimentieren laut einer Accenture-Untersuchung in diesem Bereich noch. 12 Prozent nutzen die Technologie mit einem KI-Reifegrad, der einen starken Wettbewerbsvorteil bringt, so das Ergebnis der Studie.‣ weiterlesen

Thomas Herrguth verantwortet seit 1. Juli das Deutschlandgeschäft bei VMware. Sein Vorgänger Armin Müller konzentriert sich nun auf seine Rolle als Vice President CEMEA bei VMware.‣ weiterlesen

Bei Predictive-Quality-Anwendungen kann es sich auszahlen, nicht auf die Cloud, sondern auf Edge Computing zu setzen – vor allem dann, wenn es schnell gehen muss, erläutert Data-Science-Spezialist LeanBI.‣ weiterlesen

Der ERP-Auswahlberater Trovarit begleitete Buhmann Systeme bei seiner Software-Neuausrichtung von der Prozessanalyse bis zur Systemauswahl. Ein zentrales Element war der Anforderungskatalog mit 850 Punkten. Im Marktvergleich bot die Software AMS.ERP die höchste Abdeckung - und ihr Hersteller erhielt den Zuschlag.‣ weiterlesen

Gemeinsam wollen Siemens und Nvidia das industrielle Metaverse erschließen. Die Unternehmen wollen dafür ihre Partnerschaft ausbauen und durch die Verknüpfung von Nvidia Omniverse und Siemens Xcelerator realitätsgetreue digitale Zwillinge ermöglichen.‣ weiterlesen

Amazon Web Services hat auf dem AWS Summit in San Francisco drei Services angekündigt, die sich vor allem an produzierende Betriebe richten. Mit AWS IoT TwinMaker können Entwickler digitale Zwillinge etwa von Gebäuden, Fabriken, Industrieanlagen und Produktionslinien erstellen.‣ weiterlesen

Wachstum hatte die Personalarbeit bei Schuler Präzisionstechnik vor Herausforderungen gestellt. Die manuelle Bearbeitung von Vorgängen kostete Zeit und war umständlich. Daher wurde ein digitales Personalmanagement-System auf Basis einer Software für Enterprise Content Management (ECM) aus der Taufe gehoben.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige