Beitrag drucken

Teil 5 der Serie ‚Autonome Systeme‘

Was der Vergleich von autonomen Systemen nutzt

Um autonome Systeme mit KI einschätzen zu können, müssen sie unabhängig von der Domäne verglichen werden. Teil 5 unserer Serie ‚Autonome Systeme‘ greift den Nutzen einer Gegenüberstellung auf und was es dazu braucht. Katharina Giese und Piet Lipke vom Fraunhofer IOSB-INA erläutern das am Beispiel autonomer Anlagenkomponenten in der Forschungsfabrik SmartFactoryOWL in Lemgo.

Bilder: ©Alexander Limbach/stock.adobe.com

Bilder: ©Alexander Limbach/stock.adobe.com

Die Arbeitsgemeinschaft ‚Autonome Systeme‘ der VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik hat zehn Grundsatzfragen zum Thema künstliche Intelligenz und autonome Systeme formuliert. Die fünfte handelt vom Sinn und Nutzen, autonome Systeme zu vergleichen.

Warum ist es wichtig, Autonome Systeme miteinander zu vergleichen?

Giese: Wenn wir den aktuellen Stand der Technik einschätzen wollen, müssen wir Systeme, die KI einsetzen und autonom sind, sprich selbstbestimmt ihren Lösungsweg suchen, unabhängig von der Domäne vergleichen können. Auf dieser Basis können dann z.B. Felder identifiziert werden, in denen die Forschung intensiviert oder auch übergreifend gebündelt werden kann.

Wie können autonome Systeme verglichen werden?

Lipke: Es braucht eine gemeinsame Bewertungsgrundlage, um autonome Systeme vergleichen zu können. Dafür gilt es, Eigenschaften autonomer Systeme zu gruppieren, vergleichbare Eigenschaften in physischen und digitalen Systemen zu finden und auch die Frage zu beantworten, ab wann ein System als autonom gelten soll. Dazu bedarf es eines gemeinsamen Verständnisses des Autonomiebegriffs. In der Automobilindustrie hat man sich bereits auf Metriken geeinigt, um den Grad der Autonomie – von hochautomatisiert bis tatsächlich autonom – zu beschreiben. Die dort beschriebenen Stufen richten sich nach der Notwendigkeit für den Menschen, speziell den Autofahrer, in das Geschehen einzugreifen oder das Auto vollständig zu steuern. Dem stehen Maschinen und Anlagen gegenüber, die nur noch zum Teil oder gar nicht mehr vom Menschen bedient werden. Sind diese schon autonom, wenn sie einem vorgeschriebenen Betriebsablauf folgen? Wenn laut Duden der Begriff Autonomie Selbstständigkeit und Unabhängigkeit bedeutet, dann umfasst das auch die Fähigkeit, auf unerwartete Ereignisse angemessen und nachvollziehbar zu reagieren, um ein vorbestimmtes Ziel zu erreichen.

Was sind erforderliche Eigenschaften autonomer Systeme?

Giese: Generalisiert man die Grundstrukturen autonomer Systeme, ergeben sich die Elemente:

  • • Zielerkennung – Technische Systeme werden für bestimmte Anwendungszwecke entworfen. Die erste Gemeinsamkeit ist das Ziel, zu dessen Erfüllung ein solches System beiträgt.
  • • Selbstständige Umfelderfassung -Autonome Systeme müssen ihre Umgebung und ihren Kontext wahrnehmen, um den Grad der Zielerfüllung einschätzen zu können. Diese Erfassung übernehmen etwa Sensoren.
  • • Selbstständig generierter Handlungsplan – Um ein gegebenes Ziel zu erreichen, muss ein System Einfluss auf die Umgebung nehmen können und zwar auf eine Weise, die der Zielerfüllung zweckdienlich ist. Ein vom autonomen System selbstständig generierter Handlungsplan bildet die nachvollziehbare Grundlage der Aktionen.
  • • Resilienz und Failsafe-Strategien -Diese Handlungspläne werden auf der Grundlage historischer und aktueller Daten unter anderem mit Methoden des maschinellen Lernens und der künstlichen Intelligenz generiert.

Für das Erreichen der Unabhängigkeit ist die Resilienz besonders wichtig. Denn nur so kann das System auf unvorhergesehene Ereignisse und Fehlerzustände angemessen reagieren. Die Strategien umfassen nicht nur die vom Entwickler vorgedachten potenziellen Probleme. Sie schließen auch die Fähigkeit ein, auf unerwartete Ereignisse sowie Ausfälle innerhalb des Systems zu reagieren, entsprechende Failsafe-Strategien zu entwickeln und umzusetzen, um die eigentliche Aufgabe angemessen weiter zu bearbeiten.

Was bedeutet das für die Vergleichbarkeit?

Lipke: Um den Grad der Autonomie verschiedener Systeme einschätzen zu können, lässt sich der Umfang der Umsetzung der oben genannten Grundstrukturen autonomer Systeme betrachten. Dazu sind folgende Fragen zu beantworten:

  • • Reicht die Umgebungserfassung aus?
  • • Sind alle Elemente, die zur Zielerfüllung benötigt werden, in diesem System vorhanden oder müssen andere Systeme hinzugezogen werden?
  • • Wie würde dann kommuniziert?
  • • Wird der Handlungsplan wirklich selbstständig auf Basis der dem System zugänglichen Daten generiert? Wird von außen Einfluss genommen, werden Vorgaben gemacht?
  • • Kann das System auch auf komplexe Probleme ohne Weisungen von außen reagieren?
  • • Ab wann ist ein Eingreifen durch den Menschen notwendig, z.B. zur Wartung?

Wie kann die Autonomie eines Systems mit diesen Kriterien eingeschätzt und erhöht werden?

Giese: Als Beispielsystem nehmen wir hier ein wandlungsfähiges Produktionssystem aus der SmartFactoryOWL in Lemgo. Es handelt sich um mobile und modularisierte Betriebsmittel, die über ein Transfersystem verkettet sind. Das Ziel ist eine möglichst ressourceneffiziente Produktion von hoch individualisierten Produkten. Durch ein digitales Produktgedächtnis an den Werkstückträgern kann die Individualisierung ausgelesen werden. Gleichzeitig geben diese Tags Aufschluss über den Erfüllungsgrad des Ziels. Um den Grad der Autonomie zu erhöhen, kann z.B. an den Schnittstellen angesetzt werden. Wenn einzelne Transfermodule ihre Position eigenständig innerhalb des Produktionssystems erkennen, kann das System zunehmend selbstkonfigurierend agieren. Zusätzlich können durch die durchgängige Vernetzung aller am Ziel beteiligten Betriebsmittel die Wartezeiten an Arbeitsplätzen optimiert werden, wenn das Transfersystem die Bearbeitungsreihenfolge innerhalb gewisser Grenzen selbstständig wählen kann. Der Handlungsplan des Produktionssystems, etwa welche Betriebsmittel bei Produktwechsel wann und wo benötigt werden, kann mit Methoden des maschinellen Lernens optimiert werden. Um Ausfällen entgegenzuwirken und neue Betriebsmittel zur Laufzeit einzubinden, können die Betriebsmittel selbstfahrend gestaltet werden. So werden Konfigurationsänderungen durch Produktwechsel oder auch bei Ausfällen innerhalb des Produktionssystems ohne menschliche Eingriffe realisiert.

Katharina Giese, Fraunhofer IOSB-INA Autonome Anlagenkomponenten (Bild: Mischa Gutknecht-Stöhr)

Katharina Giese, Fraunhofer IOSB-INA Autonome Anlagenkomponenten (Bild: Mischa Gutknecht-Stöhr)

Piet Lipke, Fraunhofer IOSB-INA Autonome Anlagenkomponenten (Bild: Mischa Gutknecht-Stöhr)

Piet Lipke, Fraunhofer IOSB-INA Autonome Anlagenkomponenten (Bild: Mischa Gutknecht-Stöhr)


Das könnte Sie auch interessieren:

Der Automatisierer Siemens hat eine Infrastruktur für private industrielle 5G-Netze vorgestellt. Das Paket mit Fokus auf Automatisierungsanwendungen besteht aus einem 5G-Core und einem Funkzugangsnetz, das die Central Unit, die Distributed Unit und die Radio Units beinhaltet. Die 5G-Scalance-Router von Siemens sind mit dem Paket kompatibel.‣ weiterlesen

1988 gründen Andreas Melkus, Theodor Kusejko und Marianne Kusejko Sigmatek und bringen eine Steuerung für den Maschinenbau und die Robotik auf den Markt. 35 Jahre später umfasst das Produktspektrum neben Steuerung und I/Os auch Visualisierung, Antriebstechnik und Safety.‣ weiterlesen

Ein neues Software-Framework soll Unternehmen die Abnahme bzw. Auditierung von KI- Anwendungen erleichtern. Das Framework erarbeiten das Fraunhofer IPA und das Institut für Industrielle Fertigung und Fabrikbetrieb IFF der Universität Stuttgart gemeinsam im Forschungsprojekt ’AIQualify’ der Forschungsgemeinschaft Qualität.‣ weiterlesen

Mit Gavin Moore hat der Cloud- und Daten-Spezialist NetApp einen neuen Vice President sowie CTO für die Regionen EMEA und LATAM. Er berichtet an Giovanna Sangiorgi.‣ weiterlesen

AM-Experten aus dem Maschinenbau verstärken Fachbeirat der Rapid.Tech 3D. Die Veranstaltung findet 2024 zum 20. Mal statt.‣ weiterlesen

KI-Use Cases in der Smart Factory setzen meist individuelle Projektierungen voraus. Jetzt hat MES-Hersteller MPDV die AI Suite vorgestellt. Darin sind acht KI-Standardanwendungen für die Fertigungs-IT Hydra und Fedra enthalten, mit denen sich etwa Ausschuss reduzieren, Rüstzeiten optimieren oder die Produktqualität prognostizieren lassen.‣ weiterlesen

Zum zweiten Mal in Folge wurde die Marke von weltweit 500.000 neu installierten Industrie-Robotern übertroffen. Für das laufende Jahr prognostiziert die International Federation of Robotics ein erneutes Plus von 590.000 Einheiten.‣ weiterlesen

Im Rahmen einer Partnerschaft zwischen TeamViewer und Ivanti wird die Ivanti-Software Neurons for Mobile Device Management (MDM) in TeamViewers Angebot für Remote Monitoring and Management integriert.‣ weiterlesen

An zwei Terminen im Oktober können sich Interessierte auf den Proxia XI Days über den Einsatz und die damit verbundenen Möglichkeiten von Manufacturing Execution Systems informieren.‣ weiterlesen

Infineon leitet das europäisches Forschungsprojekt EECONE, das Nachhaltigkeit und Kreislaufwirtschaft in der Elektronikindustrie fördern soll. Insgesamt sind 49 Partner beteiligt.‣ weiterlesen