Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Technologiepartnerschaften

Wie aus Daten ein Geschäftsmodell wird

Aufbau eines Wertschöpfungsnetzwerks, zu finden in: Plattform Lernende Systeme (Hrsg.): Von Daten zu Wertschöpfung: Potenziale von Daten- und KI-basierten Wertschöpfungsnetzwerken; München 2020. (Bild: Acatech - Dt. Akademie der Technikwissenschaften)

Aufbau eines Wertschöpfungsnetzwerks, zu finden in: Plattform Lernende Systeme (Hrsg.): Von Daten zu Wertschöpfung: Potenziale von Daten- und KI-basierten Wertschöpfungsnetzwerken; München 2020. (Bild: Acatech – Dt. Akademie der Technikwissenschaften)

1. Wertschöpfungsnetzwerke und Ökosysteme

Trotz starker hausinterner Kompetenzen im Umfeld des Maschinen- und Anlagenbaus verfügen derzeit nur wenige produzierende Unternehmen über ein ausreichendes Wissen im Umgang mit KI. Durch Kooperation mit geeigneten Partnern wird dieser Bedarf oft gedeckt. Bei einer geschickten Partnerauswahl und einer strategisch angelegten Zusammenarbeit, können nicht nur nachhaltig Kompetenzen im eigenen Unternehmen aufgebaut werden, sondern die Partner können auch gemeinsam an Kunden herantreten. Ein Beispiel hierfür ist ein Maschinenhersteller, der zusätzlich zur verkauften Maschine eine Dienstleistung für vorausschauende Wartung oder die Maschinenlaufzeit als Leistung im Verbund mit einem Softwarehersteller anbietet. Wichtig beim Aufbau eines Wertschöpfungsnetzwerks sind Transparenz, ein klar formuliertes Nutzenversprechen für alle Partner, langfristige Beziehungen gepaart mit Agilität in der Erstellung und Anpassung des Produktes sowie eine gemeinsame Strategie im Umgang mit Daten.

2. Umgang mit Daten

Ohne Zweck gesammelte Daten nutzen kaum etwas und große Mengen von ihnen können sogar signifikante Kosten verursachen. Wer sich im Rahmen eines Wertschöpfungsnetzwerks auf eine gemeinsame Datenbasis einigt, sollte in erster Linie Kriterien und Methoden für das Erfassen der Daten definieren. So bleiben die Datenmengen und die daraus resultierenden Kosten für die IT-Infrastruktur verhältnismäßig gering. Dazu legt man Regeln für einen nachvollziehbaren Umgang mit Daten unter den Partnern fest, insbesondere bei sensiblen Daten, welche auch einen Einfluss auf die Auswahl passender Technologien für Datenverarbeitung haben. In der Produktion ist zunehmend der hybride Ansatz der Datenverarbeitung (Edge und Cloud) beliebt. Bei diesem Ansatz wird ein Teil der Daten an der Maschine direkt analysiert und nicht an weitere Netzwerkpartner übermittelt. Neben einer einfacheren Kontrolle der Datensicherheit und der Reduktion der Kosten für Datenspeicherung bietet dieser Ansatz auch eine höhere Reaktivität der Anwendung. Im Falle eines selbstlernenden hybriden Monitorings findet das Training etwa für ein KI-Modell in der Cloud statt, die Erkennung der Anomalien erfolgt direkt auf den Edge-Geräten beinahe in Echtzeit. Die Entscheidungen rund um die Datenhandhabung haben einen direkten Einfluss auf die Auswahl der Technologien und damit verbundenen Infrastrukturen.

3. Technologien und Infrastrukturen

Kaufen oder selber bauen? Intern betreiben oder auslagern? Hier stehen Wirtschaftlichkeit und Haftungsfragen im Vordergrund. Datengetriebene Anwendungen auf eigene Faust rechtskonform zu entwickeln und zu betreiben, bedeutet neben einer hohen Investition gegebenenfalls auch eine längere Vorlaufzeit vor der Einführung der Lösung. In vielen Fällen ist es vorteilhafter, sich auf existierende Anwendungen und Technologien zu verlassen, sei es von kommerziellen Herstellern oder Open Source. Diese befolgen gängige Architekturen und Standards, konsolidieren Erfahrungen von unterschiedlichen Kunden, haben viele technische Herausforderungen bereits überwunden und arbeiten häufiger mit dem dem aktuellen Stand der Technik. Das gleiche gilt für Infrastrukturen. In jedem Partnernetzwerk sollte eine gemeinsame Strategie für die Einrichtung und Nutzung der technischen Infrastruktur erwogen werden, so dass nach außen eine gemeinsame Plattform und nicht mehrere Insellösungen sichtbar werden. Der Aufwand für die Entwicklung und den Betrieb datengetriebener Anwendungen, insbesondere im Fall der Anwendung des maschinellen Lernens, ist so groß, dass dieser Aufwand im Partnerverbund nur dann erbracht wird, wenn entweder ein wirtschaftliches Abhängigkeitsverhältnis besteht oder ein direkter Mehrwert vorliegt.

Innovation beschleunigen

Die zentrale Herausforderung für Groß- oder Kleinunternehmen auf dem Weg zur Wertschöpfung der Daten bleibt das Knowhow zu Anwendungsfällen, Big Data und KI. Digitale datengetriebene Wertschöpfungsnetzwerke und Verbunde zwischen technologieaffinen Start-ups, Forschungseinrichtungen und den produzierenden Unternehmen können die Innovation beschleunigen.


Das könnte Sie auch interessieren:

IoT-Applikationen stellen ein Kernelement der Digitalisierung im Maschinenbau dar. Diese Software hilft Produzenten dabei, die Verfügbarkeit und Produktivität ihrer Erzeugnisse zu erhöhen und sie eröffnen das Potenzial, neue Erlösströme zu generieren. Durch diesen Rückkanal können Prozessdaten kundenübergreifend für die Produktionsoptimierung beim Maschinenbetreiber und zur Produktentwicklung beim Maschinenhersteller genutzt werden.‣ weiterlesen

Fertiger sollten wissen, welche Assets in ihrem Unternehmen zum Einsatz kommen. So einfach ist es jedoch nicht, kommt in der Produktion doch schnell eine große Anzahl von Geräten und Komponenten zusammen. Software kann helfen und darüber hinaus auch anormales Verhalten vieler Geräte erkennen.‣ weiterlesen

Zur 22. Jahrestagung 'Portfolio- und Projektmanagement mit SAP' lädt TAC Events im November ein. Neben einer Präsenzveranstaltung ist auch die Online-Teilnahme möglich.‣ weiterlesen

Bosch Rexroth hat die App ValueStreamManager für digitales Mapping, Design und Visualisierung von Wertströmen vorgestellt. Viele Fertigungsbetriebe betreiben Lean Management, um den Wertstrom im Unternehmen immer besser zu planen und umzusetzen.‣ weiterlesen

Aktuelle IoT-Plattformen sollten einige Mindestanforderungen erfüllen, um als Grundlage für komplexere Projekte in Frage zu kommen. Um diese geht es im folgenden Artikel, beginnend bei der Konnektivität, also den unterstützten Protokollen und Schnittstellen.‣ weiterlesen

Die Steigerung von Produktivität und Effektivität in der Industrie und eine ressourcenschonende Nachhaltigkeit stehen sich nicht unversöhnlich gegenüber. Wirtschaftliche Ziele und ökologische Verantwortung unterstützen sich gegenseitig - nur ist das noch nicht überall erkannt.‣ weiterlesen

Die 16. FMB – Zuliefermesse Maschinenbau findet vom 10. bis 12. November 2021 im Messezentrum Bad Salzuflen statt. Zu den Topthemen kürte Veranstalter Easyfairs die Oberflächentechnik und Digitalisierung.‣ weiterlesen

Produktionsunternehmen sollen mit den neuen IoTmaxx-Mobilfunk-Gateways Maschinendaten besonders schnell in die AnyViz-Cloud übertragen können.‣ weiterlesen

Self-Service-Technologie, digitale Assistenten, künstliche Intelligenz - die Digitalwerkzeuge fürs Kundenbeziehungsmanagement werden immer ausgefeilter. Sind CRM- und ERP-System gut integriert, lassen sich im Sinn des xRM-Ansatzes auch leicht die Beziehungen zu Geschäftspartnern IT-gestützt pflegen.‣ weiterlesen

Vor allem KMU befürchten häufig, bei der IT-gestützten Prozessoptimierung im Vergleich zu Großkonzernen nicht mithalten zu können. Die beiden Technologieprojekte IIP Ecosphere und FabOS, die im Rahmen des KI-Innovationswettbewerbs vom BMWi gefördert werden, wollen diesen Firmen den Zugang zu KI-Anwendungen erleichtern.‣ weiterlesen

Emerson hat die Einführung der Software Plantweb Optics Data Lake bekanntgegeben. Die Datenmanagement-Lösung identifiziert, erfasst und kontextualisiert unterschiedliche Daten in großem Maßstab entweder vor Ort in industriellen Anlagen oder mithilfe von Cloud-Technologie.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige