Anzeige
Beitrag drucken

Die Datenfabrik als Rahmen für KI-Projekte

Skalierbare Fabrik für Data Scientists

Die nächsten deutlichen Wettbewerbsvorteile könnten an jene Firmen gehen, die künstliche Intelligenz und maschinelles Lernen besser als andere auf ihre Ziele ausrichten. Im folgenden Beitrag geht es um die Infrastruktur, mit der Data Scientists besonders produktiv arbeiten.

Datenfabrik mit sechs Stationen: Ein Fabrik-Modell für KI und Maschinelles Lernen bietet Data Scientists die optimale Umgebung für eine erfolgreiche Arbeit. (Bild: Dell EMC)

Datenfabrik mit sechs Stationen: Ein Fabrik-Modell für KI und Maschinelles Lernen bietet Data Scientists die optimale Umgebung für eine erfolgreiche Arbeit. (Bild: Dell EMC)

Das Tempo der Digitalisierung nimmt zu. Wollen sich Unternehmen einen Wettbewerbsvorsprung verschaffen, sollten möglichst alle relevanten Datenquellen ausgewertet werden und in Erkenntnisse für neue Produkte und Services münden. Dabei helfen zunehmend Algorithmen des maschinellen Lernens. Nachdem diese entsprechend trainiert wurden, können sie in großen Datenmengen Zusammenhänge, Muster sowie Trends erkennen, aus denen sich handlungsrelevante Erkenntnisse ableiten lassen. Wie aber können Unternehmen ihre Lösungen zur Datenanalyse effizient skalieren? Eine Antwort auf diese Frage liefert das Modell einer „Datenfabrik“ mit quasi industrialisierten KI-Prozessen als optimierte Arbeitsumgebung für Data Scientists. Beim Aufbau dieses Modells sollten Unternehmen sechs Punkte beachten.

1. Potenzial ausloten von KI-Technologie

Lassen sich mit Hilfe von KI bestehende Tools und Prozesse verbessern? Oder würde der Einsatz von KI-Technologien sogar einen disruptiven Charakter haben und das eigene Geschäftsmodell massiv verändern? Frameworks und Tools rund um KI und Maschinelles Lernen entwickeln sich sehr schnell. Im ersten Schritt sollte daher die IT-Abteilung diese Technologien und Funktionen evaluieren und ihre Auswirkungen auf das Unternehmen und deren potenziellen Geschäftswert identifizieren. Diese grundsätzliche Bewertung der Technologie bildet die Basis für die Planung der nächsten Schritte. Sie erfolgen in enger Zusammenarbeit mit den einzelnen Geschäftsbereichen, für die der Einsatz der Technologie besonders relevant ist, oder mit einem Team, das für Business Development zuständig ist. Letzterer Ansatz verfolgt das Ziel, mit möglichst schlanken Prozessen neue Produkte bereitzustellen und Freiraum für Innovationen zu schaffen.

Prioritäten setzen: Kriterien für die Auswahl der KI-Projekte sind die Unternehmensstrategie, die aktuellen Ziele oder eine höhere Effizienz in den vorhandenen Geschäftsprozessen. (Bild: Dell EMC)

Prioritäten setzen: Kriterien für die Auswahl der KI-Projekte sind die Unternehmensstrategie, die aktuellen Ziele oder eine höhere Effizienz in den vorhandenen Geschäftsprozessen. (Bild: Dell EMC)

2. Prioritäten setzen

Mit KI und maschinellem Lernen finden Unternehmen Datenmuster, um etwa Produkte und Services zu erstellen und neue Märkte zu erschließen. Dafür benötigen die Data Scientists eine unterstützende Infrastruktur und die passenden Tools. Angesichts begrenzter Ressourcen müssen aber selbst große Unternehmen Prioritäten bei ihren Effizienz- und Geschäftsmodellprojekten setzen. Kriterien für die Auswahl der wichtigsten Vorhaben sind die Gesamtstrategie, die aktuellen Businessziele, der zu erwartende Nutzen sowie die Verfügbarkeit der erforderlichen Daten. Die Daten müssen in dieser Phase nicht unbedingt komplett und in ihrer endgültigen Form bereitstehen, es sollten aber genügend vorhanden sein, um wenigstens das Pilotprojekt zu starten.

3. Produktivität der Data Scientists steigern

Bei der KI-basierten Datenanalyse gibt es keine Standardlösung. Manche Projekte sind sehr datenintensiv, andere benötigen weniger Informationen. Teilweise benötigen die Datenspezialisten sehr viel Zeit für das Aufbereiten und Formatieren der Daten, während sie in anderen Projekten mit komplexen und rechenintensiven neuronalen Netzen arbeiten. Auch die eingesetzten Bibliotheken und Tools werden sich sehr wahrscheinlich unterscheiden und hängen zum Teil auch von den persönlichen Präferenzen der Data Scientists und den Einsatzgebieten ab. Unternehmen sollten den Datenwissenschaftlern diese Freiheiten lassen und auf eine Standardisierung der Tools weitgehend verzichten. Jeder von ihnen ist viel produktiver, wenn er in seiner eigenen, ihm vertrauten Umgebung arbeiten kann, die speziell auf seine Herausforderung zugeschnitten ist und seine bevorzugten Tools enthält.

Erfolgsmessung: Mit einer Business-Intelligence-Lösung prüfen die Firmen, ob die mit agilen Methoden entwickelte KI-Anwendung im produktiven Einsatz den erwarteten Mehrwert liefert. (Bild: Dell EMC)

Mit einer Business-Intelligence-Lösung prüfen die Firmen, ob die mit agilen Methoden entwickelte KI-Anwendung im produktiven Einsatz den erwarteten Mehrwert liefert. (Bild: Dell EMC)

4. Auf Datenqualität achten

Analog zur Produktion bei Automobilherstellern müssen Unternehmen auch in der Datenfabrik sicherstellen, dass die Supply Chain die richtigen Komponenten Just-in-Time bereitstellt, damit die Fertigung des Produkts unterbrechungsfrei ablaufen kann. Im vorliegenden Fall geht es um die Daten als Rohstoff; am Ende steht ein Datenprodukt oder ein Service. Damit die KI-basierte Analyse funktioniert, müssen die Daten ein sehr hohes Qualitätsniveau aufweisen. Dazu gehören Kriterien wie Korrektheit, Konsistenz, Vollständigkeit, Aktualität und Einheitlichkeit. Unternehmen sollten daher großes Augenmerk auf die Vorbereitung und Validierung der Daten legen, damit die Daten-Fertigungslinie nicht unterbrochen wird. Data Scientists setzen bei der Datenanalyse auf interne, freigegebene Daten sowie bei Bedarf auch auf externe Bestände, etwa aus der Marktforschung oder aus Social-Media-Kanälen. Die IT-Infrastruktur für all dies muss mit den unterschiedlichen Datenaufkommen skalieren und alles zuverlässig speichern können. Denn die Quell-Datensätze werden permanent integriert, bereinigt und angereichert, um die Leistung des Datenmodells für maschinelles Lernen zu verbessern. In traditionellen Umgebungen mit Direct Attached Storage führt dies häufig zu Einbußen bei der Geschwindigkeit und zusätzlichen Kosten, da die Daten für jeden Data Scientist und Anwendungsfall mehrfach repliziert werden. Modernere Ansätze wie hochskalierbarer Network Attached Storage (Scale-Out-NAS) oder Storage aus der Cloud bieten Snapshot-Technologien, die Replikate schnell erstellen, da nur die jeweils geänderten Daten Kapazität verbrauchen. Auch die Rechenleistung muss skalierbar sein. Hier sollten Unternehmen auf eine flexible, virtualisierte Infrastruktur und die dynamische Verwaltung von Ressourcen in einem Cloud-Betriebsmodell setzen, um die Rechenkapazität je nach Anforderung nach oben und unten skalieren zu können. Auf diese Weise können Unternehmen Lastspitzen abfedern und die Serverauslastung erheblich verbessern.

5. Schneller umsetzen mit agilen Methoden

In KI-Projekten soll in aller Regel auf Basis der Algorithmen und statistischen Methoden ein Modell beziehungsweise eine Applikation für ein bestimmtes Einsatzgebiet entstehen. Erweist sich das erstellte Datenmodell als überzeugend, müssen die Ergebnisse so in die Geschäftspraxis übertragen werden, dass sich ein quantifizierbarer Nutzen ergibt. Der Data Scientist bereitet dann das entsprechende Arbeitspaket (Backlog) mit den benötigten Eigenschaften, Funktionalitäten und den Anforderungen für die Entwickler vor, die mit agilen Methoden arbeiten. Das Entwickler-Team setzt sich in der Regel aus Datenarchitekten und Spezialisten für die agile Entwicklung zusammen. Um effizient arbeiten zu können, benötigen die Entwickler die passenden Ressourcen, Data-Science-Tools für das Erstellen der Scoring-Modelle (Nutzwertanalysen) sowie geeignete Entwicklungs- und Analyseumgebungen. Hier haben sich virtualisierte und cloudbasierte Infrastrukturlösungen bewährt. Gleiches gilt für die anschließenden Tests des neuen Datenprodukts, bevor es in die Produktionsumgebung übertragen wird.

6. Erfolg messen und Datenprodukt stetig verbessern

Ist die neue Lösung im Einsatz, verändert sie meist auch Geschäftsprozesse. Entsprechend wichtig ist es, die erzielten Ergebnisse zu erfassen, auszuwerten und zu überprüfen, ob diese den Erwartungen entsprechen oder ob es notwendig ist, das Datenmodell und die Methodik anzupassen. Dafür ergänzen die Entwickler eine bestehende Business-Intelligence-Lösung oder Echtzeit-Monitoring-Dashboards um neue Berichtsfunktionen. Wenn Unternehmen all diese Schritte umsetzen, können sie mithilfe von maschinellem Lernen und KI-Methoden Daten effizient und mit Mehrwert für ihr Geschäft einsetzen – und das Fundament für eine erfolgreiche Zukunft schaffen.


Das könnte Sie auch interessieren:

Seit gut eineinhalb Jahren betreibt Simus Systems eine Online-Plattform, auf der Auftraggeber und Auftragnehmer die Metallbearbeitung von Bauteilen kalkulieren - und das Interesse am Tool ist rege. Anwender laden ihr CAD-Modell hoch und erhalten eine valide Vorkalkulation des geplanten Bauteils.‣ weiterlesen

Erst die Interoperabilität von Maschinen und Anlagen ermöglicht Unternehmen die Teilhabe an neuen digitalen Strukturen und ist Grundvoraussetzung für neue digitale Geschäftsmodelle. Durch interoperable Schnittstellen können neue Maschinen effizienter integriert werden. Die VDMA-Studie ‘Interoperabilität im Maschinen- und Anlagenbau‘ zeigt die Relevanz von interoperablen Schnittstellen und dazugehörigen Standards in den Unternehmen.‣ weiterlesen

Im Gewerbebau gehört ein differenziertes Zutrittsmanagement zum Standard der meisten Ausschreibungen. Für Betriebe lohnt es, sich mit dem Thema zu beschäftigen. Denn die Infrastruktur sollte später neue Anforderungen im Besuchermanagement ohne hohe Mehrkosten abbilden können.‣ weiterlesen

Die Vor- und Nachteile von SQL-, NoSQL- und Cloud-Datenbanken in Produktionsumgebungen werden noch immer diskutiert. Es wird höchste Zeit für ein Datenbankmanagement-System, das die Stärken aller drei miteinander verbindet.‣ weiterlesen

Predictive Maintenance, oder auch vorausschauende Instandhaltung, bildet einen der primären Anwendungsfälle im Spektrum der Industrie 4.0. Doch noch sind viele Unternehmen von den Ergebnissen enttäuscht, nachdem ihnen die technische Umsetzung gelungen ist. Eine planvolle Roadmap beugt dem vor, indem ein vorteilhafter Rahmen um das Werkzeug gezogen wird.‣ weiterlesen

Das Systemhaus Solid System Team wird von einer Doppelspitze geleitet. Neben Werner Heckl ist seit 1. April auch Torsten Hartinger mit der Geschäftsführung betraut.‣ weiterlesen

Materialise erwirbt Kaufoption von MES-Anbieter Link3D. Mögliche Übernahme könnte den Weg zum cloudbasierten Zugriff auf die 3D-Druck-Software-Plattform von Materialise ebnen.‣ weiterlesen

Ist die IoT-Infrastruktur in der Fertigung erst einmal installiert, müssen die erfassten Daten analysiert und in Nutzen überführt werden. Dabei kommt Event-Streaming-Technologie vor allem dann in Frage, wenn Anwender ihre Daten echtzeitnah verarbeiten wollen.‣ weiterlesen

Frank Possel-Dölken (Phoenix Contact) ist neuer Vorsitzender des Lenkungskreises der Plattform Industrie 4.0. Er übernimmt das Amt von Frank Melzer (Festo).‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige