Anzeige
Anzeige
Beitrag drucken

Predictive Asset Management

Anlagen KI-gestützt am Laufen halten

Die Anlagenverfügbarkeit soll hoch, die Wartungsdauer niedrig sein – ein Balanceakt. Mit dem KI-Framework Deep Qualicision gibt es dafür ein System, das bei Entscheidungen und Optimierungen unterstützt und von KI-Experten und Prozessverantwortlichen bedienbar ist.

Wirkungs- und Beziehungsmatrix – KI-gelernte Qualitative Labels mit Zusammenhängen (Bild: PSI FLS Fuzzy Logik & Neuro Systeme GmbH)

Wirkungs- und Beziehungsmatrix – KI-gelernte Qualitative Labels mit Zusammenhängen (Bild: PSI FLS Fuzzy Logik & Neuro Systeme GmbH)

Um unvorhergesehenen Maschinenstillständen vorzubeugen, setzen Unternehmen auf vorausschauende Wartungs- und Instandhaltungsstrategien. Die Gratwanderung zwischen Wartungsaufwand und Verfügbarkeit wird mit der Zahl der Anlagen und Einflussfaktoren jedoch schwieriger. Insbesondere Betreiber von Anlagenverbänden verfolgen daher oft eine Predictive Asset Management-Strategie, deren Kern darin besteht, auf Basis der Kenntnis und Bewertung des Zustands von Maschinen Wartungs- und Instandhaltungsentscheidungen zu treffen. Hier können technische Daten wie Druck, Temperatur und Arbeitsstunden seit der letzten Wartung einfließen, aber auch betriebswirtschaftliche Aspekte wie Termintreue, Auslastung der Ressourcen, Abschreibungszustand oder Modernisierungsbedarf.

IT reduziert Komplexität

Aufgrund der Menge an kombinierbaren Einflussfaktoren eignen sich für die Datenverarbeitung auf diesem Feld Verfahren der künstlichen Intelligenz (KI), etwa maschinelles Lernen (ML). Das Deep-Qualicision-KI-Framework der PSI FLS Fuzzy Logik & Neuro Systeme etwa hat solche Funktionen implementiert und ermöglicht zudem über eine bereitgestellte Erklärebene die Systembedienung auch für Nutzer ohne KI-Kenntnisse. Die Software kombiniert dazu eine selbstlernende Entscheidungsunterstützung und -optimierung mit KI-Prognoseverfahren. Zunächst beobachtet die Software, in welchen Temperaturbereichen bspw. die Maschine Sensordaten bereitstellt, die auf die Notwendigkeit einer Wartung hindeuten. Dazu benutzt das System eine sogenannte Labeling-Funktion, mit der eine Unterscheidung zwischen positiven, also eher erwünschten Maschinenzuständen und negativen Wertebereichen, also unerwünschten Maschinenzuständen möglich ist. Die zugrunde liegenden Sensordaten werden dementsprechend mit positiven und negativen Konnotationen – den Labels – versehen. Die Software stellt zwischen den gelabelten Datensätzen Zusammenhänge her und erkennt darin Muster, aus denen sie kurz-, mittel- oder langfristige Wartungsempfehlungen ableitet. Durch die – einmal festgelegten – Labeling-Funktionen lassen sich beinahe beliebige Signalverläufe verarbeiten und automatisch labeln. Die Software visualisiert diese gelabelten Daten in Form von Wirkungs- und Beziehungsmatrizen.

KI-Entscheidungen verstehen

In der oberen Abbildung ist zu erkennen, wie für eine Maschine die Empfehlung für eine dringende Wartung ausgegeben wird. Diese errgänzt eine Erklärung, aus welchen Faktoren heraus dieser Ratschlag entstand: Aus der Messung der Vibrationsdaten sowie des definierten dynamischen Wartungsintervalls. So können die Menschen selbst ohne KI-Kenntnisse fundiert entscheiden, ob sie dem Rat folgen oder nicht. Zudem stehen ihnen Schieberegler zur Verfügung, über die sie die Sensitivität der Labels justieren können. Der hinterlegte Lernalgorithmus leitet wiederum sowohl aus den Bestätigungen und Verneinungen als auch aus den Anpassungen über die Regler weitere Muster ab und lernt über ein im KI-Framework integriertes ML-Verfahren dazu.

Qualitatives Labeln von Maschinendaten beim Predictive Maintenance (Bild: PSI FLS Fuzzy Logik & Neuro Systeme GmbH)

Qualitatives Labeln von Maschinendaten beim Predictive Maintenance (Bild: PSI FLS Fuzzy Logik & Neuro Systeme GmbH)

 

Predictive Maintenance skalieren

Der Übergang von der vorausschauenden Instandhaltung einer einzelnen Maschine zu einem Predictive Asset Management für Maschinen- und Anlagenparks erfolgt durch zusätzliche Einflussgrößen. Diese können mit den gleichen Systematiken behandelt werden. Das Prinzip des qualitativen Labelns bleibt grundsätzlich gleich. Lediglich die Skalierung ändert sich, etwa bei den Datenbanken dahinter. Ähnliches gilt für die im Hintergrund einsetzbare Lern-Logik: Sie kann Zusammenhänge und Zielkonflikte zwischen Key Performance Indicators (KPIs) und Systematiken auch auf hoher Skalierungsebene erlernen. Die Bedienbarkeit und die Managementfunktionen des Systems bleiben ebenfalls unverändert. So lassen sich Schritt für Schritt größere Systemverbünde aufbauen.

Flexibel einsetzbare KI

Das ML-Tool Deep Qualicision ist Teil eines KI-Frameworks, das selbstständig KPI-basierte Zusammenhänge in Geschäftsprozessen erkennt. Die Auswertung der Geschäftsprozessdaten erfolgt mittels erweiterter Fuzzy-Logik und spezieller Clusterverfahren. Auf Basis gefundener Abhängigkeiten können Anwender schließlich passende Maßnahmen einleiten.

Strategisch instand halten

Jeder Maschinenstillstand kostet Geld, jede Wartungs- und Instandhaltungsmaßnahme auch. Um hier eine tragfähige Balance zu finden, kann KI-gestützte Software einen wichtigen Beitrag leisten. Sie bietet Unternehmen eine datenbasierte Grundlage für den Einstieg und Betrieb einer integrierten Asset-Management-Strategie.


Das könnte Sie auch interessieren:

Seit 1. Juli ist die Desys Gruppe Teil des PLM- und Engineering Spezialisten Technia. Das Unternehmen will mit dem Zusammenschluss seine Rolle als globaler Partner von Dassault Systèmes unterstreichen, heißt es in der Pressemeldung.‣ weiterlesen

Die Anlagen des Sondermaschinenbauers Albert & Hummel werden komplexer, sollen aber gleichzeitig möglichst schnell geliefert werden. Um diesen Zielkonflikt aufzulösen, orchestriert der Hersteller das Zusammenspiel von Mechanik und Software mit der Anwendung iPhysics zur virtuellen Inbetriebnahme.‣ weiterlesen

Version 9 des ERP-Systems Proalpha ist auf dem Markt. Das Release soll als Wegmarke des Software-Herstellers zum Anbieter einer Technologieplattform gelten, die künftig die Lösungen anderer Softwarefirmen der Unternehmensgruppe verknüpft. ‣ weiterlesen

Um der steigenden Nachfrage nach Kunststoff-Hybrid-Bauteilen gewachsen zu sein, setzt der Automobilzulieferer KE seit September 2021 auf eine verkettete Anlage mit zwei Spritzgießmaschinen und sechs Robotern. Dadurch ist es gelungen, den Output signifikant zu steigern.‣ weiterlesen

Zerspaner müssen sich intensiv mit hoher Variantenvielfalt, kleinen Losgrößen und langen Rüstzeiten befassen, um wettbewerbsfähig zu fertigen. MES-Software mit Advanced Planning and Scheduling-Funktionalität hilft, die Herausforderungen der Branche anzugehen.‣ weiterlesen

Weltweit steckt der Einsatz von künstlicher Intelligenz (KI) noch in den Kinderschuhen. Die Mehrheit der Unternehmen, die KI einsetzen, experimentieren laut einer Accenture-Untersuchung in diesem Bereich noch. 12 Prozent nutzen die Technologie mit einem KI-Reifegrad, der einen starken Wettbewerbsvorteil bringt, so das Ergebnis der Studie.‣ weiterlesen

Thomas Herrguth verantwortet seit 1. Juli das Deutschlandgeschäft bei VMware. Sein Vorgänger Armin Müller konzentriert sich nun auf seine Rolle als Vice President CEMEA bei VMware.‣ weiterlesen

Bei Predictive-Quality-Anwendungen kann es sich auszahlen, nicht auf die Cloud, sondern auf Edge Computing zu setzen – vor allem dann, wenn es schnell gehen muss, erläutert Data-Science-Spezialist LeanBI.‣ weiterlesen

Der ERP-Auswahlberater Trovarit begleitete Buhmann Systeme bei seiner Software-Neuausrichtung von der Prozessanalyse bis zur Systemauswahl. Ein zentrales Element war der Anforderungskatalog mit 850 Punkten. Im Marktvergleich bot die Software AMS.ERP die höchste Abdeckung - und ihr Hersteller erhielt den Zuschlag.‣ weiterlesen

Gemeinsam wollen Siemens und Nvidia das industrielle Metaverse erschließen. Die Unternehmen wollen dafür ihre Partnerschaft ausbauen und durch die Verknüpfung von Nvidia Omniverse und Siemens Xcelerator realitätsgetreue digitale Zwillinge ermöglichen.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige