Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Natural Language Processing

Der Dialog mit dem Dashboard

Beim Natural Language Processing interagieren Computer möglichst sinnvoll mit Anwendern in menschlicher Sprache. Was hinter der Spracherkennung von Siri und Co. bereits im Verbrauchermarkt etabliert ist, könnte bald den Umgang mit Geschäftsanwendungen revolutionieren. Auf dem Feld der Datenanalyse gibt es bereits konkrete Anwendungen.

Ask Data beantwortet schriftlich formulierte Fragen dank NLP mit passenden Dashboards. (Bild: Tableau Software, Inc.)

Ask Data beantwortet schriftlich formulierte Fragen dank NLP mit passenden Dashboards. (Bild: Tableau Software, Inc.)

Natural Language Processing (NLP), also das Steuern von Computern mittels Sprache, hat in den letzten Jahren eine sprunghafte technologische Entwicklung erlebt. Laut einer Studie von Deloitte wird NLP inzwischen von 61 Prozent der befragten deutschen Unternehmen angewendet. Das neue Feature von Tableau, Ask Data, verwendet NLP und erlaubt Anwendern somit, Fragen zu ihren Daten in natürlicher Sprache schriftlich zu formulieren und eine visuelle Antwort in Tableau zu erhalten. Dies erleichtert es Benutzern unabhängig von ihrem Kompetenzniveau, mit Daten zu interagieren und daraus analytische Erkenntnisse zu gewinnen. Anwender sollen sich mit den Daten regelrecht unterhalten und in einem Frage-Antwort-Spiel zu neuen Erkenntnissen gelangen. Der Mensch stellt Fragen, der Rechner zieht die richtigen Daten.

Kontextwissen berücksichtigt

Obwohl Technologien für die natürliche Sprachverarbeitung bereits seit mehr als 20 Jahren vorhanden sind, waren sie bisher in Umfang und Funktionalität immer stark begrenzt. Früher hätte man jede Frage, die ein Nutzer potenziell stellen könnte, einzeln programmieren müssen. Die spezielle Herausforderung für Tableau bestand also darin, unter Zuhilfenahme von KI eine Technologie zu entwickeln, die die Bedeutung einer Frage wirklich verstehen kann, und nicht nur die Wörter in der Frage definiert. KI und ML-Algorithmen sind heute schon in der Lage, sogar Absichten hinter einer Frage erkennen zu können und sich nicht nur auf Keywords zu stützen. Ein intelligentes Analyseprogramm wie Ask Data kombiniert statistisches Wissen über eine Datenquelle mit Kontextwissen über die reale Welt, um die richtigen Methoden zur Analyse von Fragen zu bestimmen. Die Stärke von Ask Data liegt in seiner Fähigkeit, Hunderte oder Tausende von Datentabellen in Millisekunden zu durchsuchen, wodurch die Technologie in die Lage versetzt wird, potenzielle Treffer zu finden, die mit den gewählten Ausdrücken übereinstimmen.

Die Anwendung

Bei einer Suchabfrage in Vertriebsdaten nach ‚Industriesteuerungsverkauf in Deutschland‘ weiß das Programm beispielsweise, dass Filter wie ‚Produktkategorie‘ oder ‚Land‘ anzuwenden sind. Dazu wird statistisches Wissen zu einer Datenquelle mit Kontextdaten über reale Sachverhalte kombiniert: Industriesteuerung ist ein häufiger Wert für das Feld Produktkategorie, und ‚deutsch‘ ein Synonym für ‚Deutschland‘. Mittels dieser eingebetteten Unterstützung von Synonymen können Nutzer Erkenntnisse gewinnen und zugleich für ein und dasselbe Feld verschiedene Ausdrücke verwenden, etwa ‚Umsatz‘ oder ‚Buchungen‘. Oder, wenn ein NLP-gesteuertes Analysesystem nach dem ‚durchschnittlichen Gaspreis nach Region‘ gefragt wird, sucht das System nicht nur nach Gaspreisen, sondern weiß auch, dass es nach Region aggregiert und den Durchschnitt anzeigt. Sogar Folgefragen lassen sich problemlos stellen. Eine typische Frage lautet etwa: ‚Zeige mir die Verkaufszahlen meiner Produkte von diesem Quartal.‘ Automatisch werden die Ergebnisse angezeigt. Anschließend kann man direkt die Frage ‚Und von letztem?‘ stellen. Die Anwendung erkennt, dass es sich dabei um eine Anschlussfrage handelt, die sich ebenfalls auf ‚Verkaufszahlen‘ und ‚Quartal‘ bezieht. Vorteil: Die erste Frage muss nicht nochmal wiederholt und in Kontext gesetzt werden.


Das könnte Sie auch interessieren:

Der McKinsey ‘Quantum Technology Monitor’ zeigt eine Zunahme der globalen Markt – und Technologieentwicklungen von Quantentechnologien. Dabei sind die angekündigten Investitionen im laufenden Jahr dreimal so hoch wie in 2020.‣ weiterlesen

Jean-Paul Seuren tritt die Nachfolge von TDM Systems-Geschäftsführer Dietmar Bohn an, der das Unternehmen verlässt.‣ weiterlesen

Gegenüber dem Sommer verzeichnet das IAB-Arbeitsmarktbarometer zwar einen Rückgang, übertrifft jedoch immer noch den Wert aus den Vorjahren. Dabei senden die Aussichten bezüglich Arbeitslosigkeit und Beschäftigung sogar positive Signale.‣ weiterlesen

Nach einem Rückgang im August ist der Ifo-Geschäftsklimaindex auch im September gesunken. Belastet werden die Zahlen dabei durch die schlechtere Stimmung in der Industrie.‣ weiterlesen

Mit Version 2.0 des IT-Sicherheitsgesetzes kommen auf viele Firmen höhere Anforderungen an ihre IT-Sicherheit zu. Die Schwellenwerte sinken, ab wann ein Unternehmen zur Umsetzung der Kritis-Auflagen verpflichtet ist. Diese betreffen jetzt auch Firmen, die laut Gesetzestext von 'erheblicher volkswirtschaftlicher Bedeutung für die Bundesrepublik Deutschland' sind. Damit sind auch Industrieunternehmen gemeint.‣ weiterlesen

Für die Umsetzung von IoT-Projekten ist nicht nur eine präzise fachliche Planung des Anwendungsfalls von Bedeutung, sondern eine vorherige Überprüfung des Reifegrads der IT-Organisation sowie des Reifegrads der IT im Umgang mit Cloud-Technologien.‣ weiterlesen

Der Maschinenbauer Manz bündelt unter dem Namen Total Fab Solutions sein Angebot für die Automatisierung von Fertigungslinien. Im Paket abgedeckt sind Umsetzungsschritte von Automatisierungsprojekten von der Fabrikplanung über die Prozess- und Materialflusssimulation oder die Integration bestehender Fertigungsprozesse bis hin zu Aufbau, Hochfahren und Optimierung schlüsselfertig zu übergebender Produktionslösungen.‣ weiterlesen

Beim traditionellen Qualitätsmanagement werden gefertigte Bauteile analysiert, um die Qualität der nächsten zu verbessern. Beim Predictive Quality-Ansatz wollen Hersteller analysegestützt eine höhere Qualität erzielen, ohne in die Vergangenheit schauen zu müssen. Bereits verfügbare Lösungen für den Ansatz integrieren die erforderlichen Daten auf einer MES-Plattform.‣ weiterlesen

Yaskawa hat den Grundstein für eine neue Europa-Zentrale in Hattersheim gelegt. Das Unternehmen investiert rund 23Mio.€ in den neuen Standort.‣ weiterlesen

Der Aufbau einer kabelgebundenen Ortungsinfrastruktur auf großen Flächen wie Lagerhallen, Baustellen oder in der Prozessindustrie ist kostspielig und zeitaufwendig.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige