Anzeige
Anzeige
Beitrag drucken

Spezialisten nach dem Co-Innovation-Prinzip verzahnen

KI und Edge kooperativ projektiert

Durch Datenverarbeitung am Netzwerkrand können KI-Systeme in Echtzeit auf Anomalien im Maschinenpark reagieren und Kosten sparen. Um die Spezialisten für Hardware, Vernetzung, KI und weitere Software effizient zusammenzubringen, hat sich der Ansatz Co-Innovation bewährt.

 (Bild: Smart Systems Hub GmbH)

(Bild: Smart Systems Hub GmbH)

Laut Grand View Research umfasste der Edge Computing-Weltmarkt im Jahr 2020 bereits 4,68 Milliarden Dollar und wird sich bis zum Jahr 2028 nahezu verzehnfachen. Die Entwicklung erklärt sich nicht zuletzt daraus, dass sich Edge-Konzepte als Schlüsseltechnologie für Digitalisierungsstrategien auf den Weg zur Industrie 4.0 herausgestellt haben. Viele Argumente sprechen dafür, sich weder ­völlig auf reine Cloud-Lösungen, noch allein auf eigene lokale Rechenzentren zu verlassen. Gerade wenn ein Unternehmen Aufgaben automatisieren, Produktivitätsreserven erschließen und resilienter gegen äußere und innere Störungen werden will.

Predictive Maintenance und integrierte Fertigung

Beispiele für Edge-Anwendungsszenarien sind der nachträgliche Ausbau eines Industriebetriebes hin zu einer – dezentral durch künstliche Intelligenz organisierten – Computerintegrierten Produktion (Computer Integrated Manufacturing, kurz CIM) oder die Integration vorausschauender Wartung (Predictive Maintenance, kurz PM). Beide Szenarien machen es in der Regel notwendig, Maschinen, Transportsysteme, Regeltechnik, Lose, womöglich auch einzelne Werkstücke mit eigener Sensorik und einem gewissen Maß an ­Eigenintelligenz nachzurüsten (Retrofit).

Einstieg mit günstiger Hardware

Damit dies möglich ist, wird die Software auf den Endgeräten ausgeführt und auch Daten werden auf den Devices gespeichert. Besonders leistungsfähige Hardware ist deshalb einer der Grundpfeiler für Edge Computing. Diese industrietauglichen Devices sind mittlerweile für niedrige dreistellige Beträge zu haben, was den Einsatz auch für kleinere Unternehmen rentabel macht.

Sichere Daten und kurze Latenzen

Vor allem in Zusammenspiel mit KI-Technologien, 5G-Vernetzung und dem Einsatz künstlicher neuronaler Netze auf Sensorsystem-Ebene sind durch den Edge-Ansatz Anwendungen möglich mit:

  • kurzen Latenzzeiten, da die Signale geringe Distanzen zurücklegen,
  • Echtzeit-Reaktion auf Anomalien,
  • schneller Vorverarbeitung von Sensordaten,
  • Entlastung des IT-Budgets, da nur bereits aggregierte Daten übertragen werden,
  • höherer Ausfallsicherheit durch dezentrale Systeme,
  • Datenhaltung auf dem Firmengelände,
  • weniger Datenlast in den Netzen,
  • Offline-Verfügbarkeit.

Um Edge-Infrastrukturen zu betreiben, gilt es für Produzenten jedoch einige Anforderungen zu adressieren. Sie müssen:

  • lokale Infrastrukturen und IT-Kapazitäten errichten,
  • einheitliche Schnittstellen, Daten- und Übergabeprotokolle in allen Ebenen des IoT-Stacks implementieren,
  • dem Risiko von inkonsistenten und unsicheren Edge-Teillösungen begegnen.

Formen der Zusammenarbeit

Einige große IT-Anbieter können zwar Edge-basierte Lösungen aus einem Guss liefern. Als produzierendes Unternehmen darauf eigene Lösungen zu implementieren, kann jedoch durchaus viel Zeit kosten und andere Nachteile mit sich bringen. Viele Firmen setzen daher bei komplexen Edge-Konzepten in der Werkhalle auf Co-Innovationsprozesse mit kleineren IT-Unternehmen, auch um die Projekte zu beschleunigen. In dieser Form der Zusammenarbeit definieren Produzent und IT-Partner Funktionsmuster, Prototypen oder ein ‘Produkt mit minimalen Eigenschaften’ (MVP) zunächst gemeinsam. Vor allem mit Blick auf die Integration in die IT-Umgebung des Herstellers hilft es anschließend, die Aufgaben in einem Architektur-Schaubild zu visualisieren. Dieser ‘IoT Stack’ sollte die verschiedenen IoT-Technologieoptionen, die Schnittstellen, Geräte und Plattformen als Ebenen und Schichten darstellen und so die weitere Arbeit strukturieren helfen. In einem konkreten Fall (mehr dazu ab Seite 62) ging es um eine Infrastruktur zur vorausschauenden Wartung von Ventilen in einer Reinstwasser-Umgebung. Dort wurden folgende Ebenen erfasst und gegebenenfalls verschiedenen Projektbeteiligten zugeordnet:

  • Sensor-Ebene – Vibrationssensoren und Miniatur-­Mikrofone für die Erfassung der Ventilgeräusche
  • Sensorsystem- und Edge-Ebene – die Sensorplattform eines Startups, die einen Teil der Edge-Intelligenz und KI-Algorithmen an Bord realisiert
  • Datenübertragung – WLAN und Ethernet, auf 5G-Funk vorbereitet
  • KI-Ebene – komplexere KI-Aufgaben und Analysen, von einer jungen Softwareschmiede hardwarenah geschrieben
  • Visualisierungsebene – Dashboard eines großen ­Digitalunternehmens
  • Cloudebene – Verknüpfung mit zentralen Clouddiensten, um die am Netzwerkrand vorverarbeiteten Daten sowie die Machine Learning-Algorithmen zu übertragen

Diese Art der Kooperation hat sich bewährt, um praxistaugliche Edge-Lösungen schnell auf den Weg zu ­bringen. Der Schlüssel liegt im passgenauen Mix an Spezialisten, die ein präzise konturiertes Projekt ­gemeinsam und zielstrebig nach vorne bringen.

 


Das könnte Sie auch interessieren:

Das neue Zentrum für Klimaneutrale Produktion und Ganzheitliche Bilanzierung unterstützt Unternehmen aus Baden-Württemberg auf dem Weg zur eigenen Klimaneutralität. Die Bewerbungsphase läuft noch bis zum 31. März 2023.‣ weiterlesen

Das übergreifende Manufacturing Operations Management wird oft als Weiterentwicklung klassischer MES-Konzepte verstanden. Reichern Betreiber ihre MOM-Systeme mit Sensordaten an, werden vielfältige Optimierungen auf der Basis von Echtzeit-Daten möglich. Im Beispiel eines japanischen Produzenten waren es etwa die Reduzierung von Stillstandszeiten und Kosten.‣ weiterlesen

Insgesamt 15,6Mrd. Stunden betrug das Arbeitsvolumen im dritten Quartal 2022. Laut IAB ein Anstieg von 0,1 Prozent gegenüber dem Vorquartal. Die Zahl der Erwerbstätigen erreichte im dritten Quartal einen neuen Höchststand.‣ weiterlesen

Forschende des CISPA Helmholtz-Zentrum für Informationssicherheit und des Instituts Kastel am Karlsruher Instituts für Technologie (KIT) haben die Ergebnisse ihrer Machbarkeitsstudie zum Thema ’Encrypted Computing’ an die Agentur für Innovation in der Cybersicherheit (Cyberagentur) übergeben.‣ weiterlesen

Komplexe Materialien auf Basis von Seltenen Erden sind wichtig für Hightech-Anwendungen, wie etwa für Permanentmagnete oder in Bildschirme. Die Chemie molekularer und nanoskaliger Verbindungen der Seltenen Erden sowie ihre physikalischen Eigenschaften untersucht nun der neue Sonderforschungsbereich SFB ’4f for Future’, den das Karlsruher Institut für Technologie (KIT) koordiniert.‣ weiterlesen

Sorgen sich Unternehmen bei der Analyse ihrer steigenden Datenmengen um Performance und IT-Sicherheit, sollten sie sich das Edge Computing-Konzept anschauen. Denn diese Zwischenschicht entlastet Netzwerke und anonymisiert Daten für ihre rechtssichere Cloud-Verarbeitung.‣ weiterlesen

Laut Ifo Institut ist die Zahl der Kurzarbeiter wieder leicht gestiegen – insbesondere in der Industrie. Im Vergleich zur Corona-Krise sei das Niveau jedoch noch sehr gering, so die Wirtschaftsforscher.‣ weiterlesen

Zwar laufen die Geschäfte der IT- und Telekommunikationsunternehmen besser als erwartet, laut Branchenverband Bitkom bleiben Unsicherheiten für die kommenden Monate hoch.‣ weiterlesen

Im Materialplanungslauf stellen Firmen sicher, ihren Materialbedarf zu decken. Aufgrund verschiedener Einflüsse errechnen die Systeme dabei oft größere Mengen, als benötigt werden - auch bei akutem Bedarf. Das neue Critical-Part-Information-System in der Dispositionssoftware von SCT soll das verhindern.‣ weiterlesen

Der europäische Cloudanbieter OVHcloud baut sein Portfolio in den Bereichen High-Performance Object Storage und Standard Object Storage aus. Die Speichersysteme gliedert der Anbieter in fünf Produktgruppen.‣ weiterlesen

Die Open Industry 4.0 Alliance kooperiert ab sofort mit Eclass. Die Allianz will den Standard als Informationsmodell einsetzen.‣ weiterlesen