Anzeige
Anzeige
Anzeige
Beitrag drucken

KI-Studie des Fraunhofer IAO

Der nächste Schritt auf dem Weg zur Industrie 4.0

Die technologischen Rahmenbedingungen führen dazu, dass Firmen KI-Lösungen häufiger diskutieren als integrieren. In einer Studie hat das Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO untersucht, wo KI in Unternehmen zu finden ist und was sie dort leistet.

 (Bild: Fraunhofer-Institut f. Arbeitswirtschaft)

(Bild: Fraunhofer-Institut f. Arbeitswirtschaft)

Nach der Vernetzung der Produktion und echtzeitnaher Datenverfügbarkeit ist ein nächster logischer Schritt der Weiterentwicklung die Anwendung autonomer und lernender Systeme. Diese Anwendungen schwacher künstlicher Intelligenz (KI) fokussieren auf die Lösung konkreter Anwendungsprobleme auf Basis der Methoden aus der Mathematik und Informatik, wobei die entwickelten Systeme zur Selbstoptimierung fähig sind.

Wenige Anwendungen

Die vom Fraunhofer IAO im Jahr 2019 durchgeführte Studie ‚Künstliche Intelligenz in der Unternehmenspraxis‘ befragte mehr als 300 Unternehmen aller Branchen aus Deutschland, von denen rund zwei Drittel weniger als 2.500 Personen beschäftigen. Die Ergebnisse zeigen, dass sich bereits drei Viertel der Unternehmen mit dem Thema KI beschäftigen, was die Bedeutung der Zukunftstechnologie untermauert. Im Gegensatz dazu setzen allerdings erst 16 Prozent der befragten Unternehmen KI-Anwendungen im Betrieb ein. Die größten Anwendungsfelder für KI liegen dabei im Bereich der Daten- und Informationsextraktion sowie in den darauf aufbauenden Analysen und Prognosen. Auf dem Shopfloor finden sich daher aktuell vorrangig KI-Anwendungsfälle, die auf Maschinendaten basieren, um Prozesse effizienter zu gestalten. Die häufigsten Anwendungen liegen im Bereich Predictive Maintenance und Predictive Quality. Lösungen, welche den Menschen in seiner täglichen Arbeit individuell unterstützen und ihn assistieren, sind heute noch wenig verbreitet. Das Potenzial dafür ist jedoch riesig: Augmented-Intelligence-Lösungen können die menschlichen kognitiven Fähigkeiten erweitern und eine dynamische Interaktion zwischen Mitarbeitenden und technischen Systemen ermöglichen, indem sie Entscheidungsprozesse vorbereiten und die Ausführung von Tätigkeiten optimieren.

 Ein Großteil der Unternehmen beschäftigt sich mit KI: Konkrete Anwendungen sind jedoch noch wenig im Einsatz. (Bild: Fraunhofer-Institut f. Arbeitswirtschaft)

Ein Großteil der Unternehmen beschäftigt sich mit KI: Konkrete Anwendungen sind jedoch noch wenig im Einsatz. (Bild: Fraunhofer-Institut f. Arbeitswirtschaft)

Vielfältiges Potenzial

Bei solchen unterstützenden KI-Systemen spielt der Autonomiegrad eine große Rolle. Systeme, die ihre Aufgaben vollständig autonom ausführen und dazu noch selbstständig neue Tätigkeitsfelder für sich erschließen, nutzen lediglich vier Prozent der Anwender. Ein Großteil der im Rahmen der Fraunhofer-Studie befragten Unternehmen gab an, dass ihre KI-Anwendung jedoch bereits teilweise autonome Entscheidungen trifft (53 Prozent), oder dass die KI den Menschen lediglich bei Entscheidungen unterstützt (28 Prozent). Um die Einbindung der Mitarbeitenden in solche Human-in-the-Loop-Systeme zielführend zu gestalten und auch die nötige Akzeptanz und das Vertrauen für eine erfolgreiche Nutzung zu erreichen, muss die KI für den Beschäftigten verständlich und nachvollziehbar sein. Laut der Studie verbessern sich für ein Unternehmen durch einen zielführenden Einsatz vor allem die Entscheidungsqualität und die Durchlauf- sowie Bearbeitungszeiten im Prozess. Ferner steigen die Kundenzufriedenheit und die Qualität der Arbeitsergebnisse durch KI-Anwendungen. Zusätzlich erkennen Unternehmen verstärkt Potenziale, durch KI nicht nur ihre Prozesse zu verbessern, sondern auch neue Produkte und Dienstleistungen zu entwickeln.

Anspruchsvolle Einführung

Den von Unternehmen zunehmend erkannten KI-Potenzialen stehen allerdings auch einige Hindernisse gegenüber, die eine Einführung erschweren und dazu führen, dass Unternehmen den Schritt von der Beschäftigung mit KI-Themen hin zu konkreten Anwendungen oftmals noch nicht gewagt haben. Neben hohen Anforderungen beim Datenschutz und der erforderlichen Datenmenge fehlen Unternehmen meist kompetente Mitarbeitende im eigenen Haus. Zudem sind nur maßgeschneiderte KI-Lösungen für Anwender zielführend, welche jedoch heute noch nicht in der Breite verfügbar sind und somit für Betriebe eine Orientierung fehlt – ähnlich wie vor Jahren bei der Einführung von Industrie-4.0-Technologie.

Interaktion von KI und Mensch steht bei den Anwendungen klar im Fokus. (Bild: Fraunhofer-Institut f. Arbeitswirtschaft)

Interaktion von KI und Mensch steht bei den Anwendungen klar im Fokus. (Bild: Fraunhofer-Institut f. Arbeitswirtschaft)

Vorgehen zur KI-Implementierung

Um diese Hindernisse zu überwinden, empfiehlt das Fraunhofer IAO den Unternehmen in der Studie konkrete Maßnahmen für die Evaluation, Vorbereitung und Realisierung von KI-Projekten. Bei der Evaluierung sollen Unternehmen ihre individuellen KI-Anwendungspotenziale systematisch identifizieren. Dabei ist auch zu prüfen, ob neben KI nicht auch andere klassische oder digitale Lösungen zielführend sind. KI ist eine Schlüsseltechnologie von enormer Bedeutung, aber kein universelles Wundermittel. Es ist dabei für Unternehmen empfehlenswert, zunächst bei den Prozessverbesserungen zu beginnen, dann aber auch den Blick auf die Etablierung neuer KI-gestützter Geschäftsmodelle zu richten. Für die Vorbereitung der KI-Einführung ist es erforderlich, von Beginn an in konkreten Projekten zu denken und sich von bereits umgesetzten KI-Anwendungsfällen anderer Unternehmen inspirieren zu lassen, ohne jedoch kurzgedacht zu kopieren. Vielmehr sollten Unternehmen ein eigenes KI-Zielbild aufbauen. Hierzu sind die Einbeziehung interner Domänen-Experten der betroffenen Bereiche und der Aufbau eigenen Wissens wichtig. Daneben sind das frühzeitige Schaffen von Transparenz und die Kommunikation von Chancen sowie Gefahren im Betrieb entscheidend. Die Verbesserung von Prozessen im Unternehmen sollte bei der Realisierung stets im Fokus stehen und Anwendungen dann Schritt für Schritt implementiert werden. Breit aufgestellte Projektteams, die neben KI-Experten auch die Arbeitnehmervertretung umfassen, erweisen sich hierfür als geeignet. Produktionsunternehmen empfiehlt das Fraunhofer IAO zunächst mit maschinenbezogenen Lösungen zu starten. Für diese Anwendungen stehen oft Daten zur Verfügung und die Unternehmen können erste Expertise aufbauen, bevor sie in weiteren Schritten sukzessive auch mitarbeiterbezogene Daten in KI-Lösungen einfließen lassen.


KI-Innovationsnetzwerk des Fraunhofer IAO

Um Unternehmen bei der Integration von KI-Technologie zu unterstützen, organisiert das Fraunhofer IAO ein neues Innovationsnetzwerk. In dem ab Herbst 2019 startenden ‘Innovationsnetzwerk menschenzentrierte KI in der Produktion’ entwickeln Unternehmen gemeinsam mit den Fraunhofer-Forscherinnen und -Forschern KI-Anwendungsfälle, pragmatische Methoden zur Potenzialanalyse sowie innovative Gestaltungsmethoden und Vorgehensweisen für die Implementierung von KI in der Produktion. Die Partner gestalten darüber hinaus ein Schulungskonzept, um ihre Mitarbeitenden hinsichtlich KI zu qualifizieren.


Das könnte Sie auch interessieren:

Mit der Übernahme des IoT-Spezialisten Bright Wolf, will der IT-Dienstleister Cognizant seine Expertise im Bereich Internet of Things erweitern.‣ weiterlesen

Vorherzusagen, wann ein Werkzeug kaputt geht, ist nicht leicht. Mittels der Messung von Schallemissionen ist dies zwar möglich, aber auch teuer. Kombiniert man jedoch gängige Verfahren mit neuen Technologien, ergeben sich immer bessere und schnellere Verfahren.‣ weiterlesen

Seit dem 25. Mai 2018 gilt die europäische Datenschutzgrundverordnung, meist nur DSGVO genannt. Der IT-Sicherheitsspezialist Rohde & Schwarz Cybersecurity berichtet, wie es um die Umsetzung in der hiesigen Industrie steht.‣ weiterlesen

In vielen Ländern Europas scheint sich der Arbeitsmarkt zu stabilisieren. Darauf deuten die Zahlen des Europäischen Arbeitsmarktbarometers hin, das nun erstmals veröffentlicht wurde.‣ weiterlesen

Eine IoT-Sicherheitsarchitektur sollte sowohl in IT- als auch in OT-Umgebungen für mehr Transparenz sorgen und Prozesse schützen. Dazu müssen die Daten aus dem IoT-Edge erfasst und extrahiert werden. Auf dieser Grundlage können Unternehmen effizienter agieren, bessere Geschäftsentscheidungen treffen und Digitalisierungsprojekte beschleunigen.‣ weiterlesen

GBTEC und Proalpha haben angekündigt, zukünftig in den Bereichen Process Mining und Business Intelligence zusammenzuarbeiten. Kunden sollen so einen Mehrwert bei der digitalen Transformation erhalten.‣ weiterlesen

Beim Anlagen- und Werkzeugbau setzt die Volkswagen AG auf Datendurchgängigkeit. Die Projektmanagement-Software Coman vernetzt die Projektbeteiligten dazu durchgängig und digital, bis hin zu den Zulieferern. Denn wenn Manager Giuseppe Lo Presti früh erkennt, dass es in einem Gewerk gerade nicht rund läuft, können gezielte Maßnahmen erfolgen.‣ weiterlesen

Mehr als eine Milliarde Schadprogramme verzeichnet das Bundesamt für Sicherheit in der Informationstechnik im aktuellen Lagebericht. Und auch die Corona-Pandemie wirkt sich auf die aktuelle Sicherheitslage aus.‣ weiterlesen

Eine Voraussetzung bei der Entwicklung von industriellen KI-Anwendungen sind ausreichende Daten. Diese sind jedoch nicht immer in der benötigten Menge, Qualität oder Struktur vorhanden. Anhand eines konkreten Beispiels erläutert dieser Beitrag, wie sich ein Data Lake anlegen und mit Daten füllen lässt, bis er ein Fundament für quasi beliebige KI-Applikationen bildet.‣ weiterlesen

CIOs setzen auf Automatisierung und KI, um wachsende Kluft zwischen begrenzten IT-Ressourcen und steigender Cloud-Komplexität zu überbrücken. Dies geht aus einer Studie von Dynatrace hervor.‣ weiterlesen

Zahlreiche Geräte verbinden sich heutzutage mit dem Firmennetzwerk. Neben offensichtlichen Geräten wie Büro-PCs und Maschinensensoren gibt es meist auch solche, die keiner auf dem Radarschirm hat. In diesem verborgenen Internet of Things könnten Einfallstore für Cyberkriminelle sein.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige