Anzeige
Anzeige
Anzeige
Beitrag drucken

KI-Studie des Fraunhofer IAO

Der nächste Schritt auf dem Weg zur Industrie 4.0

Die technologischen Rahmenbedingungen führen dazu, dass Firmen KI-Lösungen häufiger diskutieren als integrieren. In einer Studie hat das Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO untersucht, wo KI in Unternehmen zu finden ist und was sie dort leistet.

 (Bild: Fraunhofer-Institut f. Arbeitswirtschaft)

(Bild: Fraunhofer-Institut f. Arbeitswirtschaft)

Nach der Vernetzung der Produktion und echtzeitnaher Datenverfügbarkeit ist ein nächster logischer Schritt der Weiterentwicklung die Anwendung autonomer und lernender Systeme. Diese Anwendungen schwacher künstlicher Intelligenz (KI) fokussieren auf die Lösung konkreter Anwendungsprobleme auf Basis der Methoden aus der Mathematik und Informatik, wobei die entwickelten Systeme zur Selbstoptimierung fähig sind.

Wenige Anwendungen

Die vom Fraunhofer IAO im Jahr 2019 durchgeführte Studie ‚Künstliche Intelligenz in der Unternehmenspraxis‘ befragte mehr als 300 Unternehmen aller Branchen aus Deutschland, von denen rund zwei Drittel weniger als 2.500 Personen beschäftigen. Die Ergebnisse zeigen, dass sich bereits drei Viertel der Unternehmen mit dem Thema KI beschäftigen, was die Bedeutung der Zukunftstechnologie untermauert. Im Gegensatz dazu setzen allerdings erst 16 Prozent der befragten Unternehmen KI-Anwendungen im Betrieb ein. Die größten Anwendungsfelder für KI liegen dabei im Bereich der Daten- und Informationsextraktion sowie in den darauf aufbauenden Analysen und Prognosen. Auf dem Shopfloor finden sich daher aktuell vorrangig KI-Anwendungsfälle, die auf Maschinendaten basieren, um Prozesse effizienter zu gestalten. Die häufigsten Anwendungen liegen im Bereich Predictive Maintenance und Predictive Quality. Lösungen, welche den Menschen in seiner täglichen Arbeit individuell unterstützen und ihn assistieren, sind heute noch wenig verbreitet. Das Potenzial dafür ist jedoch riesig: Augmented-Intelligence-Lösungen können die menschlichen kognitiven Fähigkeiten erweitern und eine dynamische Interaktion zwischen Mitarbeitenden und technischen Systemen ermöglichen, indem sie Entscheidungsprozesse vorbereiten und die Ausführung von Tätigkeiten optimieren.

 Ein Großteil der Unternehmen beschäftigt sich mit KI: Konkrete Anwendungen sind jedoch noch wenig im Einsatz. (Bild: Fraunhofer-Institut f. Arbeitswirtschaft)

Ein Großteil der Unternehmen beschäftigt sich mit KI: Konkrete Anwendungen sind jedoch noch wenig im Einsatz. (Bild: Fraunhofer-Institut f. Arbeitswirtschaft)

Vielfältiges Potenzial

Bei solchen unterstützenden KI-Systemen spielt der Autonomiegrad eine große Rolle. Systeme, die ihre Aufgaben vollständig autonom ausführen und dazu noch selbstständig neue Tätigkeitsfelder für sich erschließen, nutzen lediglich vier Prozent der Anwender. Ein Großteil der im Rahmen der Fraunhofer-Studie befragten Unternehmen gab an, dass ihre KI-Anwendung jedoch bereits teilweise autonome Entscheidungen trifft (53 Prozent), oder dass die KI den Menschen lediglich bei Entscheidungen unterstützt (28 Prozent). Um die Einbindung der Mitarbeitenden in solche Human-in-the-Loop-Systeme zielführend zu gestalten und auch die nötige Akzeptanz und das Vertrauen für eine erfolgreiche Nutzung zu erreichen, muss die KI für den Beschäftigten verständlich und nachvollziehbar sein. Laut der Studie verbessern sich für ein Unternehmen durch einen zielführenden Einsatz vor allem die Entscheidungsqualität und die Durchlauf- sowie Bearbeitungszeiten im Prozess. Ferner steigen die Kundenzufriedenheit und die Qualität der Arbeitsergebnisse durch KI-Anwendungen. Zusätzlich erkennen Unternehmen verstärkt Potenziale, durch KI nicht nur ihre Prozesse zu verbessern, sondern auch neue Produkte und Dienstleistungen zu entwickeln.

Anspruchsvolle Einführung

Den von Unternehmen zunehmend erkannten KI-Potenzialen stehen allerdings auch einige Hindernisse gegenüber, die eine Einführung erschweren und dazu führen, dass Unternehmen den Schritt von der Beschäftigung mit KI-Themen hin zu konkreten Anwendungen oftmals noch nicht gewagt haben. Neben hohen Anforderungen beim Datenschutz und der erforderlichen Datenmenge fehlen Unternehmen meist kompetente Mitarbeitende im eigenen Haus. Zudem sind nur maßgeschneiderte KI-Lösungen für Anwender zielführend, welche jedoch heute noch nicht in der Breite verfügbar sind und somit für Betriebe eine Orientierung fehlt – ähnlich wie vor Jahren bei der Einführung von Industrie-4.0-Technologie.

ANZEIGE
Interaktion von KI und Mensch steht bei den Anwendungen klar im Fokus. (Bild: Fraunhofer-Institut f. Arbeitswirtschaft)

Interaktion von KI und Mensch steht bei den Anwendungen klar im Fokus. (Bild: Fraunhofer-Institut f. Arbeitswirtschaft)

Vorgehen zur KI-Implementierung

Um diese Hindernisse zu überwinden, empfiehlt das Fraunhofer IAO den Unternehmen in der Studie konkrete Maßnahmen für die Evaluation, Vorbereitung und Realisierung von KI-Projekten. Bei der Evaluierung sollen Unternehmen ihre individuellen KI-Anwendungspotenziale systematisch identifizieren. Dabei ist auch zu prüfen, ob neben KI nicht auch andere klassische oder digitale Lösungen zielführend sind. KI ist eine Schlüsseltechnologie von enormer Bedeutung, aber kein universelles Wundermittel. Es ist dabei für Unternehmen empfehlenswert, zunächst bei den Prozessverbesserungen zu beginnen, dann aber auch den Blick auf die Etablierung neuer KI-gestützter Geschäftsmodelle zu richten. Für die Vorbereitung der KI-Einführung ist es erforderlich, von Beginn an in konkreten Projekten zu denken und sich von bereits umgesetzten KI-Anwendungsfällen anderer Unternehmen inspirieren zu lassen, ohne jedoch kurzgedacht zu kopieren. Vielmehr sollten Unternehmen ein eigenes KI-Zielbild aufbauen. Hierzu sind die Einbeziehung interner Domänen-Experten der betroffenen Bereiche und der Aufbau eigenen Wissens wichtig. Daneben sind das frühzeitige Schaffen von Transparenz und die Kommunikation von Chancen sowie Gefahren im Betrieb entscheidend. Die Verbesserung von Prozessen im Unternehmen sollte bei der Realisierung stets im Fokus stehen und Anwendungen dann Schritt für Schritt implementiert werden. Breit aufgestellte Projektteams, die neben KI-Experten auch die Arbeitnehmervertretung umfassen, erweisen sich hierfür als geeignet. Produktionsunternehmen empfiehlt das Fraunhofer IAO zunächst mit maschinenbezogenen Lösungen zu starten. Für diese Anwendungen stehen oft Daten zur Verfügung und die Unternehmen können erste Expertise aufbauen, bevor sie in weiteren Schritten sukzessive auch mitarbeiterbezogene Daten in KI-Lösungen einfließen lassen.


KI-Innovationsnetzwerk des Fraunhofer IAO

Um Unternehmen bei der Integration von KI-Technologie zu unterstützen, organisiert das Fraunhofer IAO ein neues Innovationsnetzwerk. In dem ab Herbst 2019 startenden ‘Innovationsnetzwerk menschenzentrierte KI in der Produktion’ entwickeln Unternehmen gemeinsam mit den Fraunhofer-Forscherinnen und -Forschern KI-Anwendungsfälle, pragmatische Methoden zur Potenzialanalyse sowie innovative Gestaltungsmethoden und Vorgehensweisen für die Implementierung von KI in der Produktion. Die Partner gestalten darüber hinaus ein Schulungskonzept, um ihre Mitarbeitenden hinsichtlich KI zu qualifizieren.


Das könnte Sie auch interessieren:

Mit 84,3 Punkten ist der Ifo-Geschäftsklimaindex auf den tiefsten Stand seit Mai 2020 gefallen. Dabei betraf der Rückgang alle Wirtschaftsbereiche.‣ weiterlesen

Vom 18. bis zum 19 Oktober findet die In.Stand in Stuttgart statt. Fokusthemen der Fachmesse für Instandhaltung und Services sind in diesem Jahr Nachhaltigkeit und Sicherheit.‣ weiterlesen

Das DFKI und das Fraunhofer IML untersuchen in einem Forschungsprojekt, wie künstliche Intelligenz bei der Vergabe von Lehrstühlen und Institutsleitungen unterstützen kann. In der Folge soll ein Portal für Bewerber-Profile entstehen.‣ weiterlesen

Nachhaltigkeit wird oft von den Beteiligten eines Wertschöpfungsnetzwerkes erwartet - und sie kann sich als gewinn- und kostenrelevant darstellen. Um jene Unternehmen zu diesem Wandel zu befähigen, die über begrenzte Ressourcen verfügen, können diese Firmen Ökosysteme etwa mit Zulieferern, Vertragspartnern und Technik-Dienstleistern aufbauen, um kreative Lösungen zu erarbeiten.‣ weiterlesen

Motiviert von der Aussicht auf Effizienz im Produktionsprozess und damit verbundenen Kosten- sowie Wettbewerbsvorteilen, setzen immer mehr Unternehmen auf Technologien wie etwa Sensorik oder künstliche Intelligenz. Und oft fällt das Schlagwort ’Green Manufacturing’. Dabei schauen viele nur auf den unmittelbaren ökologischen und ökonomischen Nutzen. Was oft fehlt, ist die Berechnung der Gesamtbilanz dieser Digitalisierungsmaßnahmen und der Weitblick in Sachen Nachhaltigkeit.‣ weiterlesen

Mit Dimitrios Koutrouvis hat Lütze Transportation ab Oktober einen neuen Geschäftsführer. Er tritt die Nachfolge von André Kengerter an.‣ weiterlesen

Der Bitkom schätzt die Schäden durch Cyberangriffe auf jährlich 220Mrd.€. Unternehmen sind also gefragt, sich bestmöglich gegen solche Vorfälle zu schützen. Wie? Darüber können sich Interessierte vom 25. bis zum 27. Oktober auf der Security-Messe It-sa informieren.‣ weiterlesen

Low Code-Entwicklungsplattformen helfen Unternehmen, ihre IT an stetig wechselnde Strukturen und Prozesse anzupassen. Es gilt: Wo programmiert wird, kann meist Low Code-Technologie eingesetzt werden – erst recht im IIoT-Projekt.‣ weiterlesen

Planung und Überwachung sind entscheidende Faktoren für die Effzienz einer Produktion. Die Basis dafür bilden Daten. Daher setzt die Firma GGK in ihrer Fertigung auf die IIoT-Plattform Toii. Mit ihr erfasst der Hersteller von Kabelmanagement-Systemen alle relevanten Daten, um die Transparenz zu verbessern und etwa Störungen schneller zu beseitigen.‣ weiterlesen

Korrekte Stammdaten sind beim Wechsel auf SAP S/4Hana enorm wichtig. Drei Tools für das Product Structure Management helfen, die Engineering-Stückliste mit der Manufacturing-Stückliste automatisiert abzugleichen.‣ weiterlesen