Anzeige
Beitrag drucken

Explainable Artificial Intelligence

KI-Entscheidungen verstehen

Das Modell zeigt schematisch, wie KI-Systeme, die zur Behandlung von Geschäftsprozessen eingesetzt werden, im Deep-Qualicision-Analyse-Layer eingebettet werden können.. (Bild: PSI FLS Fuzzy Logik & Neuro Systeme GmbH)

Das Modell zeigt schematisch, wie KI-Systeme, die zur Behandlung von Geschäftsprozessen eingesetzt werden, im Deep-Qualicision-Analyse-Layer eingebettet werden können.. (Bild: PSI FLS Fuzzy Logik & Neuro Systeme GmbH)

Aus der Praxis

Qualitatives Labeln kommt in industriellen Prozessen sowohl für optimierende als auch analysierende Anwendungen zum Einsatz. Allen Prozessen sind dabei sehr heterogene KPI-Zielsysteme gemein. Die Optimierung von Produktionsreihenfolgen der Kundenaufträge ist beispielsweise in der Automobilproduktion ein wesentlicher Geschäftsprozess. Denn eine wirtschaftliche Produktion wird vor allem durch die Ausbalancierung der aktuellen Struktur der Auftragsmengen und Zusammensetzung aus Ausstattungsmerkmalen erreicht. Die KPIs – nicht selten im zweistelligen Bereich und in Konflikt zu einander – beschreiben einerseits die technische Fähigkeit der Produktionslinien und andererseits die Zusammensetzung des Auftragspakets . Die Aufgabe des Qualitativen Labelns besteht folglich in der Datenaufbereitung für ein KI-Optimierungsverfahren, das die Zielkonflikte ausbalanciert. Dafürt labelt das System jedes Auftragspaket mit Graden der Zielerfüllbarkeit und berechnet und visualisiert diese mit Hilfe von Zielkonflikttabellen in Matrix- bzw. Clusterform. Die Kompromissbildung zur Bestimmung Produktionsreihenfolgen ist auf diese Weise nachvollziehbar und erklärbar.

Vorausschauende Planung

Auch in der vorausschauenden Planung und Instandhaltung dient Qualitatives Labeln der Ausbalancierung verschiedener KPIs. In diesem Kontext beschreiben sie vor allem die zulässigen Toleranzbereiche, die für die Entscheidung, ob und wann eine Wartung ansteht, relevant sind. Dazu zählen Kriterien wie Temperatur, Druck, Arbeitsstunden, der Termin der letzten Wartung, Stromverbrauch oder Kritikalität des Maschinenausfalls. Über die Kennzahlen werden erneut Zeitreihen gebildet, die das Lernen qualitativer Labels ermöglichen. Ihre Interpretation erfolgt in Form von Clustern und als das Zusammentreffen bestimmter positiver bzw. negativer Maschinenzustände. Das darauf aufbauende KI-Entscheidungssystem erlernt so verschiedene Clusterzusammensetzungen und leitet optimierte Wartungsentscheidungen ab. Deren Zusammensetzung als KPI-Cluster macht die Entscheidungen nachvollziehbar und erklärbar.

Erklärbare KI-Systeme

KI-gestützte Systeme werden sukzessive zahlreiche Entscheidungen übernehmen. Dafür bedarf es sowohl speziell aufbereiteter Daten als auch ergänzende Komponenten, welche die Entscheidungen nachvollziehbar machen. Qualitatives Labeln als Beispiel des Explainable AI-Ansatzes ist ein bereits erprobter Weg, der beides kann: Er bereitet industrielle Geschäftsprozessdaten KI-fähig auf und bereitet gleichzeitig den Weg für erklärbare KI-Systeme.


Das könnte Sie auch interessieren:

Seit gut eineinhalb Jahren betreibt Simus Systems eine Online-Plattform, auf der Auftraggeber und Auftragnehmer die Metallbearbeitung von Bauteilen kalkulieren - und das Interesse am Tool ist rege. Anwender laden ihr CAD-Modell hoch und erhalten eine valide Vorkalkulation des geplanten Bauteils.‣ weiterlesen

Erst die Interoperabilität von Maschinen und Anlagen ermöglicht Unternehmen die Teilhabe an neuen digitalen Strukturen und ist Grundvoraussetzung für neue digitale Geschäftsmodelle. Durch interoperable Schnittstellen können neue Maschinen effizienter integriert werden. Die VDMA-Studie ‘Interoperabilität im Maschinen- und Anlagenbau‘ zeigt die Relevanz von interoperablen Schnittstellen und dazugehörigen Standards in den Unternehmen.‣ weiterlesen

Im Gewerbebau gehört ein differenziertes Zutrittsmanagement zum Standard der meisten Ausschreibungen. Für Betriebe lohnt es, sich mit dem Thema zu beschäftigen. Denn die Infrastruktur sollte später neue Anforderungen im Besuchermanagement ohne hohe Mehrkosten abbilden können.‣ weiterlesen

Die Vor- und Nachteile von SQL-, NoSQL- und Cloud-Datenbanken in Produktionsumgebungen werden noch immer diskutiert. Es wird höchste Zeit für ein Datenbankmanagement-System, das die Stärken aller drei miteinander verbindet.‣ weiterlesen

Predictive Maintenance, oder auch vorausschauende Instandhaltung, bildet einen der primären Anwendungsfälle im Spektrum der Industrie 4.0. Doch noch sind viele Unternehmen von den Ergebnissen enttäuscht, nachdem ihnen die technische Umsetzung gelungen ist. Eine planvolle Roadmap beugt dem vor, indem ein vorteilhafter Rahmen um das Werkzeug gezogen wird.‣ weiterlesen

Das Systemhaus Solid System Team wird von einer Doppelspitze geleitet. Neben Werner Heckl ist seit 1. April auch Torsten Hartinger mit der Geschäftsführung betraut.‣ weiterlesen

Materialise erwirbt Kaufoption von MES-Anbieter Link3D. Mögliche Übernahme könnte den Weg zum cloudbasierten Zugriff auf die 3D-Druck-Software-Plattform von Materialise ebnen.‣ weiterlesen

Ist die IoT-Infrastruktur in der Fertigung erst einmal installiert, müssen die erfassten Daten analysiert und in Nutzen überführt werden. Dabei kommt Event-Streaming-Technologie vor allem dann in Frage, wenn Anwender ihre Daten echtzeitnah verarbeiten wollen.‣ weiterlesen

Frank Possel-Dölken (Phoenix Contact) ist neuer Vorsitzender des Lenkungskreises der Plattform Industrie 4.0. Er übernimmt das Amt von Frank Melzer (Festo).‣ weiterlesen

Anzeige
Anzeige
Anzeige