Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Explainable Artificial Intelligence

KI-Entscheidungen verstehen

Wie KI-Systeme zu Entscheidungen kommen, bleibt oft verborgen. Um sich wirklich auf solche Systeme verlassen zu können, muss die Blackbox geöffnet werden. Dafür sorgt der Ansatz Explainable AI (XAI), bei dem z.B. interpretierbarer KPI-Labels zum Einsatz kommen.

Layer-Modell Qualitatives Labeln (Bild: PSI FLS Fuzzy Logik & Neuro Systeme GmbH)

Layer-Modell Qualitatives Labeln (Bild: PSI FLS Fuzzy Logik & Neuro Systeme GmbH)

Qualitatives Labeln ist eine KI-Methode, die Entscheidungs- und Optimierungsalgorithmen mit maschinellem Lernen verbindet und bereits industriell eingesetzt wird. Sie zielt darauf ab, Zusammenhänge aus skalierbaren Rohdaten zu erlernen, die in beliebigen Geschäftsprozessen entstehen. Das Ziel ist eine maximale Annährung an die definierten Geschäftsprozessziele. dafür legt die Lösung auf den Input- und Output-Mustern des betreffenden Prozesses KPI-basierte Bewertungen fest. Diese definieren, welche Muster für welche Werte eher positiv und für welche eher negativ zur Erreichung der Geschäftsprozessziele sind. Im nächsten Schritt lassen sich über diese Bewertungen Zeitreihen bilden und sogenannte Datencluster ermitteln. Die Datencluster sind entweder als Ergebnis einer KI-Geschäftsprozessdatenanalyse zu verstehen oder dienen als Basis für darauf aufbauende KI-Systeme. Doch wie kann dieses Vorgehen dabei helfen, KI-Systeme besser zu verstehen? Indem qualitatives Labeln einen Zusammenhang herstellt zwischen der Datenperspektive des Geschäftsprozesses und den angeschlossenen KI-Algorithmen, entsteht eine neue, KPI-bezogene Sicht auf die Ergebnisse des Geschäftsprozesses. Dadurch sind auch die Ergebnisse der mit den gelabelten Daten trainierten KI-Systeme verständlicher. Durch die KI-basierte Bearbeitung des Geschäftsprozesses öffnet sich eine zusätzliche, automatisiert erlernte und erklärbare Sicht auf die Perspektive des Zielgeschäftsprozesses. Kurzum: War ein KI-System aus der Perspektive des Geschäftsprozesses bislang eine Blackbox, kann eine geschäftsprozessbezogene Erklärungskomponente helfen, das Verhalten des KI-Systems nachzuvollziehen.

Machine Learning

Dreh- und Angelpunkt des qualitativen Labelns ist ein maschinelles Lernverfahren: Dieses erkennt anhand von Geschäftsprozessdaten selbsttätig KPI-Zielkonflikte aus Zeitreihendaten. Als Initialinput sind neben den Prozessrohdaten lediglich KPI-Bewertungsfunktionen notwendig. Pro Geschäftsprozess-KPI wird definiert, welche Datenwerte dem KPI-Ziel als eher zuträglich (positiv) und welche Datenwerte als eher abträglich (negativ) einzustufen sind. Über die Zeitreihenbezüge lassen sich die Prozessdaten schließlich derart semantisch ordnen, dass der Algorithmus selbstständig erkennt, in welchen Situationen die Rohdaten wie zu labeln sind. Das System ermittelt also, welche Datenkonstellationen und -muster sich positiv und welche sich negativ auf die Erreichung der KPI-Ziele auswirken. Im Ergebnis kann das System methodisch abgesichert Zusammenhänge erlernen. Wo manuelle Labeling-Prozesse zunehmend an ihre Grenzen stoßen und zum Flaschenhals der Datenaufbereitung werden, kann Qualitatives Labeln als umgebender, datenaufbereitender Layer jedes KI-System unterstützen, indem Zusammenhänge auf Rohdaten maschinell voranalysiert und hinsichtlich ihrer Wirkung auf die Ziel-KPIs interpretiert werden.

Einfach zu interpretieren

Abweichend von anderen Systemen stützt sich dieses Verfahren dabei zunächst nicht auf KI-Fachwissen, sondern auf Wissen über den Prozess, für den das KI-System entwickelt wurde, indem Prozessrohdaten durch Bewerten von Prozess-KPIs qualifiziert werden. Auf diese Weise entstehen qualitativ gelabelte Daten, die in Verbindung mit einer Visualisierung der gelernten Zusammenhänge auch für KI-Laien interpretierbare Ergebnisse liefern. Damit erhalten auch darauf aufbauende KI-Verfahren eine einfacher zu verstehende Lerngrundlage.

Beitrag drucken

Explainable Artificial Intelligence

KI-Entscheidungen verstehen

Wie KI-Systeme zu Entscheidungen kommen, bleibt oft verborgen. Um sich wirklich auf solche Systeme verlassen zu können, muss die Blackbox geöffnet werden. Dafür sorgt der Ansatz Explainable AI (XAI), bei dem z.B. interpretierbarer KPI-Labels zum Einsatz kommen. (mehr …)


Das könnte Sie auch interessieren:

Die 2023er Releases von Autodesk stehen zur Verfügung. Parallel stellt das Systemhaus Contelos überarbeitete Addons vor: Tools4Engineers, Tools4GIS, GeoPhotoXtension und BohrKernXtension sollen Anwendern die Arbeit mit Autodesk-Lösungen erleichtern.‣ weiterlesen

Vecoplan nutzt bereits seit 2008 Fernzugriffsfunktionen für seine Maschinen. Mithilfe des IoT-Spezialisten Ixon hat der Maschinenbauer dieses Angebot ausgeweitet und bietet heute sogar Kameraüberwachung für seine Recyclingmaschinen an.‣ weiterlesen

Im Werkzeugmanagement eröffnet das Kennzeichnen von Assets mit Data Matrix Codes die Möglichkeit, Werkzeuge zu tracken und mit ihren Lebenslaufdaten zu verheiraten.‣ weiterlesen

Google Cloud gab kürzlich die Einführung der beiden Lösungen Manufacturing Data Engine und Manufacturing Connect bekannt. Mit den Tools lassen sich Assets einer Fertigungsumgebung vernetzen, Daten verarbeiten und standardisieren.‣ weiterlesen

Virtuelle multicloudfähige Plattformen können in Fertigungsbetrieben das Fundament bilden, um IT-Infrastruktur und Betriebsabläufe zu modernisieren und effizient zu betreiben. Denn das nahtlose Zusammenspiel von Cloud-Anwendungen, Softwarebereitstellung sowie Remote Work lassen sich mit digitalen Plattformen vergleichsweise einfach und global orchestrieren.‣ weiterlesen

Wibu-Systems ist Anwendungspartner im Projekt KoMiK. Im Mai wurde das Projekt abgeschlossen und der Karlsruher Lizensierungsspezialist hat zusammen mit den Projektpartnern aus Wirtschaft und Wissenschaft Empfehlungen zur Auswahl eines digitalen Kooperationssystems erarbeitet, inklusive eines Screening-Tools.‣ weiterlesen

MES-Lösungen verfügen über unterschiedliche Erweiterungsmodule, etwa für das Qualitätsmanagement. Der Ausbau der Basisfunktionen sorgt jedoch oft für Aufwand. Eine Alternative versprechen Cloudlösungen.‣ weiterlesen

Bei ihrer digitalen Transformation adaptieren Fertigungsunternehmen Technologien wie künstliche Intelligenz, Machine Learning und digitale Zwillinge. Cloud Computung hilft, dafür erforderliche Kapazitäten skaliert bereitzustellen.‣ weiterlesen

Mit mehreren neuen Partnern erweitert der Softwareanbieter ZetVisions sein Partnerangebot. Unter anderem sollen Pikon und People Consolidated das Beratungsangebot des Heidelberger Unternehmens ergänzen.‣ weiterlesen

Viele Deep-Learning- und Machine-Vision-Anwendungen stellen hohe Ansprüche an die eingesetzten Industrie-Rechner. Für den Einsatz in diesem Umfeld hat Hardware-Spezialist Spectra die PowerBox 4000AC C621A ins Programm genommen.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige