IoT-Technologien lassen sich in quasi jeder Branche nutzenstiftend einsetzen. Aber im Herzstück der deutschen Wirtschaft, der Industrie, ist das Potenzial besonders groß. Doch zuvor müssen die gängigen Ansätze der Datenverarbeitung angepasst werden.
Die deutsche Industrie genießt weltweit einen hervorragenden Ruf. Im internationalen Vergleich liegt Deutschland laut der Studie ‚Readiness for the Future of Production‘ des World Economic Forums (WEF) bei der Komplexität der Produktion auf Platz drei. Beim Thema Industrie 4.0 nahm Deutschland sogar eine Vorreiterrolle ein und begann sehr früh mit der Vernetzung und Digitalisierung von Produkten, Wertschöpfungsketten und Businessmodellen, um die digitale Produktion voranzutreiben. Fertigungsanlagen sind heute schon zum Großteil innerhalb altbewährter Systemarchitekturen und mittels klassischer Feldbusse vernetzt. Um die Wettbewerbsfähigkeit der fertigenden Industrie und die Platzierung in Sachen Komplexität der Produktion beizubehalten, spielt das Industrial Internet of Things (IIoT) eine entscheidende Rolle. Das auf die Industrie spezialisierte IoT ermöglicht u.a. eine erweiterte Form der vernetzten Produktion und damit neues Potenzial für die Prozessoptimierung. Es verbindet die Operational Technologie (OT) der Fertigungsstraße mit der Unternehmens-IT. Wenn Produktion, Logistik, Einkauf und Vertrieb dieselbe Datenbasis haben, kann die komplette Wertschöpfungskette digital abgebildet werden und es ergeben sich völlig neue Möglichkeiten. Das größte Potenzial des IIoT liegt darin, Verbindungen zwischen verschiedenen Domänen wie Produktion, Intralogistik, Supply Chain oder Planung herzustellen und übergreifende Szenarien zu etablieren. Ein Beispiel dafür sind Telematikplattformen: KFZ-Versicherer nutzen Daten aus dem Auto, um Risiken zu bewerten und den Versicherungsbeitrag entsprechend anzupassen. Übertragen auf ein Fertigungsunternehmen könnte dies beispielweise bedeuten, dass ein Maschinenbauer seinem Endkunden eine Fertigungsanlage zur Verfügung stellt, diese ihm aber nicht verkauft, sondern ein kombiniertes Mietmodell plus nutzungsbasierter Abrechnung anbietet. Grundlage dafür bieten die Daten der angebunden Maschine.
Daten im Mittelpunkt, Hardware am Rand
Daten, deren Auswertung sowie der Mehrwert, den man daraus gewinnen kann, stehen im Mittelpunkt des IoT. Für Unternehmen ist es daher entscheidend, sich mit der richtigen Technologie Zugang zu dieser Ressource zu verschaffen. Vernetzte Dinge und ihre Sensoren produzieren kontinuierlich große Datenmengen. Sie entstehen außerhalb der herkömmlichen IT, müssen aber mit den traditionellen Unternehmenssystemen, etwa dem ERP-System, interagieren können. Das erfordert neue Ansätze der Datenverarbeitung. Für IIoT-Projekte müssen Unternehmen in der Lage sein, Edge Computing, On-Premises und Cloud Computing zu kombinieren. Edge Computing bedeutet, dass Daten bereits am Entstehungsort – also am Netzwerkrand – analysiert werden. Das ist aufgrund der riesigen Datenmengen erforderlich, da es hohe Kosten verursachen würde, sämtliche Daten zur zentralen Auswertung ins Rechenzentrum zu übertragen. Daten, die auf einen Normalzustand hinweisen oder redundant sind, werden herausgefiltert.
Edge Computing ist zudem für Anwendungen erforderlich, die blitzschnelle Entscheidungen erfordern. Bei autonomen Fahrzeugen hängt beispielsweise die Fahrzeugsicherheit davon ab, dass ein Fahrerassistenzsystem eine gefährliche Situation in Echtzeit erkennt und umgehend reagiert. Aber auch bei Produktionsmaschinen ist es wichtig, einen möglichen Schaden oder Ausfall einer Maschine möglichst schnell zu erkennen, um sofort handeln zu können. Daten, deren Auswertung weniger zeitkritisch ist, können in die Cloud übertragen werden. Diese stellt eine zentrale Technologie für IoT-Anwendungen dar. Sie bietet mehr Flexibilität und Skalierbarkeit als On-Premises-Systeme und eignet sich daher für große Datenmengen als zentrale Sammelstelle. Zudem können Unternehmen in der Cloud Daten und Software plattform- und ortsunabhängig zur Verfügung stellen. Das kann den Nutzerkomfort erhöhen und gleichzeitig die Zusammenarbeit mit externen Mitarbeitern oder Dienstleistern vereinfachen. Da es jedoch auch geschäftskritische Anwendungen und sensible Daten gibt, die im Unternehmen bleiben sollen, haben On-Premise-Systeme weiterhin Bestand. Charakteristisch für IoT-Projekte ist also eine komplexe Interoperabilität zwischen Cloud, On-Premises und Edge-Systemen.
Keine natürlichen Grenzen
Die Datenmengen in IIoT-Projekten unterliegen keiner Obergrenze. Sie wachsen kontinuierlich und befinden sich in stetigem Fluss sowie intensivem Austausch zwischen verschiedenen Systemen. Alle Anwendungen, die Daten benötigen und die erforderlichen Berechtigungen haben, greifen auf die Datenströme zu. Der herkömmliche Ansatz zur Datenverarbeitung, der batchbasiert, also sequentiell nach dem ETL(Extract, Transform, Load)-Verfahren abläuft, nimmt dabei zu viel Zeit in Anspruch und ist daher ungeeignet. Stattdessen kann eine Streaming-Analytics-Software die Datenströme bereits im Fluss in Echtzeit analysieren. Dafür werden allerdings extrem leistungsfähige Speicher benötigt, da herkömmliche Festplatten-Architekturen bei Echtzeitverarbeitung an ihre Grenzen stoßen. Schnelle Redaktionszeiten erzielen beispielsweise In-Memory-Technologien – Datenbankmanagementsysteme, die den Arbeitsspeicher als Datenspeicher nutzen.
Eine Plattform kann Unternehmen dabei helfen, die technischen Herausforderungen auf dem Weg zum eigenen IoT zu meistern. Dazu vereint sie Komponenten, die für solche Projekte benötigt werden. Sie helfen bei der Vernetzung von Objekten, der Datensammlung und bietet etwa Streaming-Analytics-Funktionen zur (beinahe) Echtzeitanalyse. Plattformen können Integrationen in bestehende Systeme und Prozesse vereinfachen und die verteilte Datenverarbeitung zwischen Cloud, Edge und On-Premises Computing unterstützen. Vorkonfigurierte Services für gängige Anwendungsfälle wie etwa Predictive Maintenance oder Track and Trace erleichtern zusätzlich den Einstieg. Eine gute IoT-Plattform sollte auch über Künstliche Intelligenz vefügen und Machine Learning beherrschen. Erkenntnisse aus vorherigen Auswertungen fließen so in eine Wissensdatenbank ein. Das hilft beispielsweise, beim Anwendungsfall Predictive Maintenance Anforderungsmuster zu verfeinern, die auf eine Wartung hindeuten. Suchen Unternehmen also eine geeignete IoT-Plattform, sollten sie sich genau über die eigenen Ziele und die Funktionen sowie Architektur der Plattform im Klaren sein. Dann gelingt es deutlich besser, nützliche Services zu entwickeln und zur Marktreife zu bringen.
Wie KI-gestützte ERP-Systeme die Industrie verändern
Nachhaltigkeit: Aus „Alt“ mach „Neu“ oder „Reparatur“ statt „Neuanschaffung“
Elastisch, intelligent, resilient: ERP-System in unsicheren Zeiten
Make Lean Leaner
KI „out of the box“ – Künstliche Intelligenz (KI) in der Smart Factory
Digitale Fertigungsoptimierung für den Maschinen- und Anlagenbau
PLM aus der Cloud: flexibel, skalierbar, ready-to-run
ANZEIGE
Whitepaper
Smart Factory Elements
10 Fragen, die sich Fertigungsbetriebe bei der ERP-Auswahl stellen sollten
Vom 4-Stufen-Modell zum Regelkreis
Digital richtig aufgestellt - Wie sich EMS-Dienstleister für eine volatile Zukunft rüsten
Sales & Operations Planning (S&OP) mit der waySuite: Optimal aufeinander abgestimmte Absatz-, Projekt-, Produktions- und Beschaffungsplanung mit der waySuite
ANZEIGE
Videos
Asprova User Day 2022 in Frankfurt
Erfolgreiche Asprova APS Einführung bei Fogel, Hersteller von gewerblichen Kühl- und Gefrieranlagen für Abfüller kohlensäurehaltiger Getränke
Erfolgreiche Asprova APS Einführung bei Prospera: Laserschneiden, Biegen und Stanzen. Aprova hat all unsere Planungsprobleme gelöst.
Smart Factory Cloud Services
Erfolgreiche Asprova APS Einführung bei Danwood: Einer der größten Hersteller schlüsselfertiger Häuser in Euroapa.
Mittelständische Unternehmen investieren selbst in schwierigen Zeiten in Microsoft-Technologien, weil sie überzeugt sind, dass ihre Mitarbeiterproduktivität steigt und sich ihre Kostenstruktur bessert. Microsoft hat mit dem Microsoft-Partner-Network ein Netzwerk aufgebaut, das ein Forum für den Aufbau von Partnerschaften, Zugang zu Ressourcen und einen Rahmen für Dialoge und Kooperationen bietet. Für unsere Leser gibt die Microsoft-Partnerübersicht in Ausgabe Juli/August der IT&Production Tipps für die Suche nach einer geeigneten Branchen- oder Speziallösung im Bereich des produzierenden Gewerbes.
Auf der Suche nach Innovation, nach neuen Lösungen und der Abgrenzung zum Mitbewerb vernetzen sich zunehmend mehr Unternehmen mit externen Experten und Partnern. SAP hat mit dem SAP-Ecosystem ein Netzwerk aufgebaut, das ein Forum für den Aufbau von Partnerschaften, Zugang zu Ressourcen und einen Rahmen für Dialoge und Kooperationen bietet. In der Maiausgabe der Fachzeitschrift IT&Production erhalten unsere Leser einen aktuellen Überblick zum SAP-Ecosystem im Bereich des produzierenden Gewerbes.
Immer mehr Anbieter von Maschinen, Automatisierungstechnik und Industriesoftware integrieren künstliche Intelligenz in ihre Produkte. Das ganze Potenzial spielen selbstlernende Systeme aber erst aus, wenn sie passgenau auf ihren Einsatz in Fertigung und Büro zugeschnitten wurden. Über beide Möglichkeiten, als Fertiger die Vorzüge von industrieller KI zu nutzen, geht es im regelmäßig aktualisierten Themenheft Künstliche Intelligenz.
Das Internet of Things verändert Produktwelten und die Vernetzung in der Fertigung gleichermaßen. Entstehende Ökosysteme laden zur einer neuen Form der Zusammenarbeit ein. Die Spezialausgabe IoT Wissen Kompakt informiert über die Technologie, Projektierung und Anbieter für die eigene Applikation, in- und außerhalb der Fabrik.
Um alle Potenziale eines MES umfassend ausnutzen zu können, beleuchten unsere Autoren in der Serie von MES Wissen Kompakt die erfolgskritischen Faktoren, um Fertigungsunternehmen präventiv zu steuern. Darüber hinaus präsentiert MES Wissen Kompakt ein breites Spektrum an Firmenportraits, Produkt- neuheiten und Dienst- leistungen im MES-Umfeld.
Ein Unternehmen, das sich mit der Auswahl eines ERP- Systems befasst, muss sich gleichsam mit einem viel- schichtigen Software-Markt und unklaren Interessen- lagen an interne Abwick- lungsprozesse auseinander- setzen. Guter Rat bei der Investitionsentscheidung ist teuer. ERP/CRM Wissen Kompakt unterstützt Sie bei der gezielten Investition in die IT-Infrastruktur.