Anzeige
Anzeige
Beitrag drucken

Künstliche Intelligenz als Universaltechnologie

Experimentieren und Erfahrung sammeln

Wie frühere Universaltechnologien – etwa die Dampfmaschine oder die Elektrizität – dürfte künstliche Intelligenz die Wirtschaft grundlegend verändern. Um sie nutzenstiftend einzusetzen, müssen die möglichen Anwendungsfelder aber erst einmal bekannt sein.

 (Bild: ©Miriam Doerr Martin Frommherz/shutterstock.com)

(Bild: ©Miriam Doerr Martin Frommherz/shutterstock.com)

Bereits seit den 1950er Jahren sprechen wir über künstliche Intelligenz und seither gab es viele Prognosen, wann Computer in der Lage sein werden, bestimmte Handlungen zu erledigen, die bisher nur von Menschen beherrscht wurden. Als wichtiger Meilenstein gilt 1997, als IBMs Deep Blue 126 Millionen Stellungen pro Sekunde gegen den Schachweltmeister Garri Kasparow berechnete, um auf diese Weise herauszufinden, welcher Zug den wahrscheinlich positivsten Effekt auf den weiteren Spielverlauf hat. Beim chinesischen Strategiespiel Go sind solche Brut-Force-Ansätze aufgrund der hohen Anzahl möglicher Spielzüge nicht praktikabel und erfolgsversprechende heuristische Ansätze sind nicht ausreichend bekannt oder dokumentiert: Menschliches Gespür und Intelligenz wurden als notwendig angesehen, um erfolgreich Go zu spielen. 2016 besiegte das Programm AlphaGo von Google DeepMind den besten menschlichen Go-Spieler, indem es unzählige Trainingsspiele mit sich selbst absolvierte, um sich erfolgsversprechende Strategien selbst beizubringen. Nach diesem Erfolg der KI galt das Pokerspiel als nächste Hürde, da die Spielposition der Kontrahenten für den Spieler nicht bekannt sind und geblufft werden kann. Auch hier konnten 2017 und 2019 Meilensteine erreicht werden, als eine KI von Mitarbeitern der Carnegie Mellon University zunächst in Spielen gegen einzelne Profispieler und anschließend sogar in Partien mit mehreren Spielern gewinnen konnte.

Anwendungsfelder der KI (Bild: Dr. Wieselhuber & Partner GmbH)

Anwendungsfelder der KI (Bild: Dr. Wieselhuber & Partner GmbH)

Beschleunigte Entwicklung

Drei technologisch tief ineinandergreifende Trends haben diese Entwicklung und praktische Anwendung von künstlicher Intelligenz ermöglicht:

  • Die exponentiell steigende Rechenkapazität, u.a. durch leistungsfähigere Prozessoren für weniger Geld sowie Vernetzung in Cloud- und Edge-Computing.
  • Die Entwicklung von Machine Learning, und insbesondere Deep Learning, das heißt das Finden von Zusammenhängen in strukturierten und unstrukturierten Daten ohne die analytische Modellierung durch Experten mit z.B. Gleichungssystemen.
  • Die digitale Erfassung und Speicherung von Daten aus unterschiedlichsten Sensoren, welche den Zugriff auf eine lange Datenhistorie sowie die Verarbeitung einer hohen Datenvielfalt (Big Data) ermöglicht.
Einsatzfelder und Anwendungsnutzen von KI in Unternehmen (Bild: Dr. Wieselhuber & Partner GmbH)

Einsatzfelder und Anwendungsnutzen von KI in Unternehmen (Bild: Dr. Wieselhuber & Partner GmbH)

Drei zentrale Anwendungen

Die Anwendungsfelder, in welchen KI heute schon in der Lage ist, sehr gute Ergebnisse und echten Nutzen zu erzielen, lassen sich auf drei Bereiche zusammenfassen: Der erste Bereich ist Wahrnehmen und Erkennen. Hierzu gehören z.B. die vor allem im privaten Umfeld genutzten Anwendungen der Spracherkennung und Sprachübersetzung oder die branchenübergreifend eingesetzten Verfahren der Bilderkennung in der Qualitätssicherung der Produktion oder Logistik. Durch maschinelles Lernen wurden diese im Vergleich zu früheren Computer-Vision-Systemen deutlich performanter und konnten für neue Aufgabenstellungen eingesetzt werden. Der zweite Bereich steht unter der Überschrift Problemlösung. Darunter fallen datengetriebene Modelle für langfristige Forecasts von Absatz oder Beständen sowie zur dispositiven Steuerung. Auch die sensorgestützte Optimierung von (verfahrenstechnischen) Prozessen durch z.B. die automatisierte Kalibrierung oder die Parametrierung von Maschinen und Anlagen in Echtzeit löst Probleme, die insbesondere durch kapazitive Engpässe geeigneter und erfahrener Fachkräfte entstehen. Ein dritter und noch weniger bekannter Bereich ist Kollektives Wissen und Kreation: Hier greift die KI nicht nur auf vorhandenes digitales Wissen zurück, sondern ist auch in der Lage ganz neues Wissen zu erschaffen. So kann KI den Produktentwicklungsprozess unterstützen, indem komplexe Zusammenhänge zwischen Designparametern und Leistungskennzahlen auf Basis von Daten modelliert werden oder alternative Produktdesigns generiert werden können. KI ist demnach heute in der Lage, in gewissem Umfang definierte Teilprobleme sehr gut und vor allem besser und schneller zu lösen als der Mensch und ihn in Entscheidungsprozessen zu unterstützen. Aus unternehmerischer Sicht lässt sich zusammenfassen, dass im Hinblick auf die beiden möglichen Wirkrichtung der KI, nämlich der Umsatzsteigerung und der Kostenminimierung heute die meisten realisierten Anwendungen auf die Kostenreduktion abzielen. In Zukunft werden sich jedoch beide Richtungen etablieren und noch viel stärker durchsetzen.

Chancen und Risiken

KI und insbesondere maschinelles Lernen sorgt in Unternehmen auf drei Ebenen für Veränderung und somit für neue Chancen aber auch Risiken:

  • Aufgaben und Tätigkeiten: KI kann z.B. zur Analyse und Aufbereitung von Reports im Controlling verwendet werden. Der Controller kann sich auf die Erklärung von gefundenen Phänomenen konzentrieren, der Anteil interessanter und wertschöpfender Tätigkeiten der Mitarbeiter steigt.
  • Geschäftsprozesse: Die Auftrags- und Produktionssteuerung insbesondere in Verbindung mit Störungen und dem situativ richtigen Umgang damit kann viel besser durch KI erfolgen, da sie schnell viele und übergreifend vernetzte Daten miteinander vergleichen kann.
  • Geschäftsmodelle: Die hohe Verfügbarkeit interner und externer Daten unterstützt einerseits die Kundenorientierung, wenn individuelle Bedürfnisse antizipiert und adressiert werden können. Andererseits bieten Daten selbst die Möglichkeit der Monetarisierung entlang spezifischer Wertschöpfungsketten.

Fazit

Der größte Hemmschuh in der Umsetzung der bereits vorhandenen Möglichkeiten der KI ist heute das Management in den Unternehmen. Die neue Technologie, ihre Fähigkeiten und Limitationen sind noch zu wenig transparent. Initiativen, die ohne klare Ziele und mit geringer Einbindung geeigneter Domänenexperten des jeweiligen Anwendungsfalls oder Funktionsbereichs durchgeführt werden, verlaufen häufig im Sand oder liefern nicht zufriedenstellende Ergebnisse. Für vielversprechende und passende Anwendungsszenarien ist das richtige interne Team zu finden bevor geeignete Technologiepartner ausgewählt werden. Unternehmen sollten jetzt beginnen passende Anwendungsszenarien zu identifizieren und erste praktische Erfahrungen mit KI zu sammeln.


Das könnte Sie auch interessieren:

Die Zahl der Beschäftigten in Kurzarbeit ging im Juli auf 5,6 Millionen zurück, gegenüber 6,7 Millionen im Juni. Doch während immer mehr Händler und Dienstleister aufatmen können, sinken die Zahlen in der Industrie nur leicht. Im Maschinenbau und der Elektrobranche steigen sie sogar.‣ weiterlesen

Rund 37 Prozent der produzierenden Unternehmen wollen Homeoffice auch nach der Corona-Krise nutzen. Vor Ausbruch der Pandemie waren es nur etwa 25 Prozent der Fertigungsbetriebe, wie eine repräsentative Umfrage des ZEW kürzlich ergab.‣ weiterlesen

Die ZEW-Konjunkturerwartungen für Deutschland steigen im August 2020 gegenüber dem Vormonat wieder deutlich an, nachdem sie im Juli leicht zurückgegangen waren. Die Konjunkturerwartungen liegen aktuell bei 71,5 Punkten, also 12,2 Punkte mehr als im Juli. Die Einschätzung der konjunkturellen Lage für Deutschland hat sich geringfügig verschlechtert. Der Lageindikator beträgt in der August-Umfrage minus 81,3 Punkte und liegt damit 0,4 Punkte unterhalb des Vormonatswertes.‣ weiterlesen

Schneider Electric hat den MES-Anbieter Proleit AG erworben. Mit diesem Schritt will der französische Konzern seine Kompetenzen bei der Software-gestützten Automatisierung erweitern.‣ weiterlesen

Mit einem Mix aus Standardprozessen und Integrationsfähigkeit zielt das neue Cloud-ERP XRP Lexbizz auf den Sweet Spot des Mittelstands. Die SaaS-Lösung von Lexware könnte gerade Firmen interessieren, die ihre ERP-Landschaft ohne großes IT-Projekt modernisieren wollen. Besonders spannend: Für Fertigungsunternehmen gibt es eine Branchenlösung.‣ weiterlesen

Als die Covid-19-Krise ausbrach, fehlte es vielen französischen Krankenhäusern an medizinischer Ausrüstung. Unter der Leitung eines Pariser Chirurgen wurde daraufhin eine Initiative gestartet: der 3D-Druck von medizinischem Material nach Bedarf. Für die Qualitätskontrollen wurde der Artec Space Spider 3D-Scanner eingesetzt.‣ weiterlesen

Siemens stellt sein Topmanagement um: Roland Busch übernimmt ab Oktober die Verantwortung für das Geschäftsjahr 2021. Auf der Hauptversammlung nächsten Februar löst Busch Topmanager Joe Kaeser als Vorstandsvorsitzenden ab. Digital Industries-Chef Klaus Helmrich geht März 2021 nach 35 Jahren bei Siemens in den Ruhestand. Seine Position übernimmt Cedrik Neike zum 1. Oktober 2020. Neben seinem Nachfolger Matthias Rebellius rückt Judith Wiese als Leiterin HR in den Vorstand auf.‣ weiterlesen

In der aktuellen Wirtschaftskrise rücken die industriellen Lieferketten in den Fokus. Dabei arbeiten die Unternehmen seit Jahren daran, mit Soft- und Hardware Transparenz und Effizienz in der Supply Chain herzustellen. Maximilian Brandl erläutert als neuer CEO des SCM-Spezialisten Salt Solutions, was das SAP Hana-Portfolio dabei leisten kann.‣ weiterlesen

Die durch Handelsstreitigkeiten und politische Verwerfungen geschwächte Weltkonjunktur wurde durch die Covid-19-Pandemie zusätzlich getroffen. Das zeigt sich auch am deutlichen Orderminus im Maschinen- und Anlagenbau.‣ weiterlesen

Die Ansätze für industrielle Instandhaltung sind mal mehr und mal weniger geeignet. Das Ziel dabei: Instandhaltungs- und Produktionspläne möglichst in Einklang zu bringen. Da kommt Adaptive Maintenance Scheduling ins Spiel.‣ weiterlesen

Aimtec hat die neue Produktgeneration Sappy4x4 auf den Markt gebracht hat. Sie ist auf SAP S/4Hana vorbereitet, soll aber weiterhin an die Anforderungen spezifischer Prozesse in Automobil- (SappyCar) oder Fertigungsunternehmen (SappyManufacturing) anpassbar bleiben.‣ weiterlesen

Anzeige
Anzeige
Anzeige