Anzeige
Anzeige
Beitrag drucken

Künstliche Intelligenz als Universaltechnologie

Experimentieren und Erfahrung sammeln

Wie frühere Universaltechnologien – etwa die Dampfmaschine oder die Elektrizität – dürfte künstliche Intelligenz die Wirtschaft grundlegend verändern. Um sie nutzenstiftend einzusetzen, müssen die möglichen Anwendungsfelder aber erst einmal bekannt sein.

 (Bild: ©Miriam Doerr Martin Frommherz/shutterstock.com)

(Bild: ©Miriam Doerr Martin Frommherz/shutterstock.com)

Bereits seit den 1950er Jahren sprechen wir über künstliche Intelligenz und seither gab es viele Prognosen, wann Computer in der Lage sein werden, bestimmte Handlungen zu erledigen, die bisher nur von Menschen beherrscht wurden. Als wichtiger Meilenstein gilt 1997, als IBMs Deep Blue 126 Millionen Stellungen pro Sekunde gegen den Schachweltmeister Garri Kasparow berechnete, um auf diese Weise herauszufinden, welcher Zug den wahrscheinlich positivsten Effekt auf den weiteren Spielverlauf hat. Beim chinesischen Strategiespiel Go sind solche Brut-Force-Ansätze aufgrund der hohen Anzahl möglicher Spielzüge nicht praktikabel und erfolgsversprechende heuristische Ansätze sind nicht ausreichend bekannt oder dokumentiert: Menschliches Gespür und Intelligenz wurden als notwendig angesehen, um erfolgreich Go zu spielen. 2016 besiegte das Programm AlphaGo von Google DeepMind den besten menschlichen Go-Spieler, indem es unzählige Trainingsspiele mit sich selbst absolvierte, um sich erfolgsversprechende Strategien selbst beizubringen. Nach diesem Erfolg der KI galt das Pokerspiel als nächste Hürde, da die Spielposition der Kontrahenten für den Spieler nicht bekannt sind und geblufft werden kann. Auch hier konnten 2017 und 2019 Meilensteine erreicht werden, als eine KI von Mitarbeitern der Carnegie Mellon University zunächst in Spielen gegen einzelne Profispieler und anschließend sogar in Partien mit mehreren Spielern gewinnen konnte.

Anwendungsfelder der KI (Bild: Dr. Wieselhuber & Partner GmbH)

Anwendungsfelder der KI (Bild: Dr. Wieselhuber & Partner GmbH)

Beschleunigte Entwicklung

Drei technologisch tief ineinandergreifende Trends haben diese Entwicklung und praktische Anwendung von künstlicher Intelligenz ermöglicht:

  • Die exponentiell steigende Rechenkapazität, u.a. durch leistungsfähigere Prozessoren für weniger Geld sowie Vernetzung in Cloud- und Edge-Computing.
  • Die Entwicklung von Machine Learning, und insbesondere Deep Learning, das heißt das Finden von Zusammenhängen in strukturierten und unstrukturierten Daten ohne die analytische Modellierung durch Experten mit z.B. Gleichungssystemen.
  • Die digitale Erfassung und Speicherung von Daten aus unterschiedlichsten Sensoren, welche den Zugriff auf eine lange Datenhistorie sowie die Verarbeitung einer hohen Datenvielfalt (Big Data) ermöglicht.
Einsatzfelder und Anwendungsnutzen von KI in Unternehmen (Bild: Dr. Wieselhuber & Partner GmbH)

Einsatzfelder und Anwendungsnutzen von KI in Unternehmen (Bild: Dr. Wieselhuber & Partner GmbH)

Drei zentrale Anwendungen

Die Anwendungsfelder, in welchen KI heute schon in der Lage ist, sehr gute Ergebnisse und echten Nutzen zu erzielen, lassen sich auf drei Bereiche zusammenfassen: Der erste Bereich ist Wahrnehmen und Erkennen. Hierzu gehören z.B. die vor allem im privaten Umfeld genutzten Anwendungen der Spracherkennung und Sprachübersetzung oder die branchenübergreifend eingesetzten Verfahren der Bilderkennung in der Qualitätssicherung der Produktion oder Logistik. Durch maschinelles Lernen wurden diese im Vergleich zu früheren Computer-Vision-Systemen deutlich performanter und konnten für neue Aufgabenstellungen eingesetzt werden. Der zweite Bereich steht unter der Überschrift Problemlösung. Darunter fallen datengetriebene Modelle für langfristige Forecasts von Absatz oder Beständen sowie zur dispositiven Steuerung. Auch die sensorgestützte Optimierung von (verfahrenstechnischen) Prozessen durch z.B. die automatisierte Kalibrierung oder die Parametrierung von Maschinen und Anlagen in Echtzeit löst Probleme, die insbesondere durch kapazitive Engpässe geeigneter und erfahrener Fachkräfte entstehen. Ein dritter und noch weniger bekannter Bereich ist Kollektives Wissen und Kreation: Hier greift die KI nicht nur auf vorhandenes digitales Wissen zurück, sondern ist auch in der Lage ganz neues Wissen zu erschaffen. So kann KI den Produktentwicklungsprozess unterstützen, indem komplexe Zusammenhänge zwischen Designparametern und Leistungskennzahlen auf Basis von Daten modelliert werden oder alternative Produktdesigns generiert werden können. KI ist demnach heute in der Lage, in gewissem Umfang definierte Teilprobleme sehr gut und vor allem besser und schneller zu lösen als der Mensch und ihn in Entscheidungsprozessen zu unterstützen. Aus unternehmerischer Sicht lässt sich zusammenfassen, dass im Hinblick auf die beiden möglichen Wirkrichtung der KI, nämlich der Umsatzsteigerung und der Kostenminimierung heute die meisten realisierten Anwendungen auf die Kostenreduktion abzielen. In Zukunft werden sich jedoch beide Richtungen etablieren und noch viel stärker durchsetzen.

Chancen und Risiken

KI und insbesondere maschinelles Lernen sorgt in Unternehmen auf drei Ebenen für Veränderung und somit für neue Chancen aber auch Risiken:

  • Aufgaben und Tätigkeiten: KI kann z.B. zur Analyse und Aufbereitung von Reports im Controlling verwendet werden. Der Controller kann sich auf die Erklärung von gefundenen Phänomenen konzentrieren, der Anteil interessanter und wertschöpfender Tätigkeiten der Mitarbeiter steigt.
  • Geschäftsprozesse: Die Auftrags- und Produktionssteuerung insbesondere in Verbindung mit Störungen und dem situativ richtigen Umgang damit kann viel besser durch KI erfolgen, da sie schnell viele und übergreifend vernetzte Daten miteinander vergleichen kann.
  • Geschäftsmodelle: Die hohe Verfügbarkeit interner und externer Daten unterstützt einerseits die Kundenorientierung, wenn individuelle Bedürfnisse antizipiert und adressiert werden können. Andererseits bieten Daten selbst die Möglichkeit der Monetarisierung entlang spezifischer Wertschöpfungsketten.

Fazit

Der größte Hemmschuh in der Umsetzung der bereits vorhandenen Möglichkeiten der KI ist heute das Management in den Unternehmen. Die neue Technologie, ihre Fähigkeiten und Limitationen sind noch zu wenig transparent. Initiativen, die ohne klare Ziele und mit geringer Einbindung geeigneter Domänenexperten des jeweiligen Anwendungsfalls oder Funktionsbereichs durchgeführt werden, verlaufen häufig im Sand oder liefern nicht zufriedenstellende Ergebnisse. Für vielversprechende und passende Anwendungsszenarien ist das richtige interne Team zu finden bevor geeignete Technologiepartner ausgewählt werden. Unternehmen sollten jetzt beginnen passende Anwendungsszenarien zu identifizieren und erste praktische Erfahrungen mit KI zu sammeln.


Das könnte Sie auch interessieren:

PTC hat das neunte Major Release der CAD-Software Creo vorgestellt. Das Unternehmen mit Hauptsitz in Boston hat in die Weiterentwicklung der Modellierungsumgebung investiert, um die Benutzerfreundlichkeit und Produktivität zu erhöhen.‣ weiterlesen

Mit Robotic Process Automation können standardisierte Prozesse automatisiert werden. Das entlastet Mitarbeiter, kann sie aber auch gänzlich überflüssig machen. Fehlende Akzeptanz für die Technologie kann RPA-Projekte zum Scheitern bringen. Eine Studie der Internationalen Hochschule hat untersucht, welche Kriterien für die Akzeptanz relevant sind.‣ weiterlesen

Ein neues Produkt wird in die Fertigung aufgenommen. Die Folge in vielen Unternehmen: Die Anlagen stehen zwei Wochen still, bis alle SPSen umprogrammiert sind. Dabei ließe sich die Neukonfiguration mit spezieller MES-Software quasi in der Frühstückspause einspielen.‣ weiterlesen

Das Institut für Schweißtechnik und Fügetechnik (ISF) der RWTH Aachen University untersucht im Sonderforschungsbereich 1120 'Präzision aus Schmelze' Einflüsse verschiedener Legierungselemente auf die Eigenspannungsverteilung. Um die Dehnung von Bauteilen zu untersuchen, wird sie mit in situ-Bildkorrelation beobachtet. Das Setup ist anspruchsvoll.‣ weiterlesen

Boston Micro Fabrication hat den 3D-Drucker MicroArch S240 vorgestellt: Bei einem Bauvolumen von 100x100x75mm ist er auf die Serienproduktion von Mikrobauteilen in Endqualität ausgelegt.‣ weiterlesen

Das Vertragsmanagement findet oft noch in Papierform statt. Dabei ermöglichen Lösungen für das Contract Lifecycle Management (CLM) längst eine digitale Abwicklung entlang der gesamten Wertschöpfungskette.‣ weiterlesen

Die deutschen Industrieunternehmen rechnen noch bis in das nächste Jahr mit Materialmangel. Im Schnitt gehen die Unternehmen laut einer Umfrage des Ifo Instituts von einem Zeitraum von zehn Monaten aus, bis sich die Lage wieder verbessert.‣ weiterlesen

Bordnetzhersteller können ihre spezifischen Anforderungen an Manufacturing-Execution-Systeme mit Branchenlösungen abbilden. Bei der Integration spart das viel Customizing und im Betrieb können Nutzer erwarten, dass Branchentrends besonders schnell im Standard landen.‣ weiterlesen

In einem offenen Brief haben sich IT-Forscher verschiedener Institutionen und Unternehmen an die Politik gewandt und fordern, Lösegeldzahlungen nach Ransomware-Angriffen zu unterbinden.‣ weiterlesen

Der Security-Spezialist Trend Micro gründet mit VicOne eine Tochtergesellschaft, die sich auf die Absicherung von Elektrofahrzeugen und vernetzten Fahrzeugen konzentrieren soll.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige