Anzeige
Anzeige
Anzeige
Beitrag drucken

Internet of Things

Edge und Swarm Computing zusammendenken

Eine Swarm-Computing-Infrastruktur befähigt Fertigungsunternehmen dazu, auf Grundlage von Datenanalysen Entscheidungen zu treffen und in Aktionen umzusetzen. Eine solche Datenanalyse muss eng mit den betroffenen Geschäftsprozessen kombiniert sein. Sie kann zudem unterschiedliche Edge-Computing-Systeme und Cloud-Computing-Umgebungen mit einbeziehen – für IoT-Szenarien, die auch die vernetzte Produktion ausweiten können.

IT-Management per Dashboard -Blick in eine 'Smart Factory' (Bild: ©ipopba/gettyimages.de)

IT-Management per Dashboard -Blick in eine ‚Smart Factory‘ (Bild: ©ipopba/gettyimages.de)

Der autonome Lkw rollt über das Werksgelände und steuert das Lager an, wo ein Roboter das Rohmaterial entlädt und ins Hochregallager einsortiert. Damit dies funktioniert, koordiniert ein Swarm-Computing-System als zentrale Steuerungseinheit die Systeme des Lkw, der mit GPS-Empfängern und Funketiketten ausgestatteten Transportpaletten, des Roboters und der Lagerlogistik. Der ‚Schwarm‘ bindet alle beteiligten Komponenten in ein temporäres Netzwerk ein und stellt die Ressourcen für die Datenerfassung und -analyse in Echtzeit zur Verfügung. Auf diese Weise lassen sich die Rohlinge auch vom Lager aus automatisiert in die vernetzte Produktion eintakten. Eingefügt in eine Smart Factory bildet das Szenario zusammen mit der vorausschauenden Wartung (Predictive Maintenance) die wichtigsten Einsatzfelder von Edge und Swarm Computing. Gerade Unternehmen im Fertigungsumfeld sollten diese zusammendenken.

Vom Rand zum Schwarm

Schauen wir uns zunächst das Wichtigste zum Edge Computing an. Es basiert darauf, dass Sensoren an den Maschinen Werte messen, diese als Statusmeldungen und Diagnoseinformationen an Edge Devices senden. Diese Geräte sind möglichst nahe am Datenentstehungsort installiert. Sie haben genügend Rechenleistung, um Daten aufzubereiten. Diese Vorverarbeitung gestattet es, Reaktionen in Echtzeit auszulösen. Nachdem eine Aktion ausgelöst wurde oder feststeht, dass diese nicht nötig ist, transferieren die Mikrorechenzentren die Daten in ein Rechenzentrum (Cloud), wo tiefere Analysen stattfinden. Es gibt einsatzfähige Hochleistungsserver für Edge Computing, die Algorithmen für künstliche Intelligenz anwenden. So führt die BullSequana Edge von Atos kontextbezogene Analysen von Bilddaten durch, die Kameras erfassen. Edge Computing lässt sich durch Swarm Compting ergänzen. Ein Schwarm umfasst IoT-Endpunkte, Edge-Systeme sowie Cloudplattformen. Diese heterogenen Komponenten kommunizieren und formieren sich eigenständig und auf flexible Weise zu neuen IT-Infrastrukturen. Sie stellen Nutzern und Anwendungen Services, Inhalte und Ressourcen zur Verfügung. Übertragen auf das Beispiel Predictive Maintenance bedeutet das: In bestimmten Zeitabständen schließen sich smarte Diagnosesysteme an einem Edge Node an. Die Diagnose-Tools suchen nach den Daten, die den Verschleiß von Werkzeugen anzeigen oder Indizien liefern, dass eine Komponente bald ausfallen kann. Ein Schwarm handelt autonom und automatisiert. Wird etwa ein vordefinierter Temperatur-Grenzwert bei einer Werkzeugmaschine überschritten, analysiert das Swarm-Computing-System Daten in Echtzeit, um anschließend eine Meldung an das Servicepersonal zu senden. Oder der Schwarm ermittelt einen Notfall und schaltet die Maschine ab.

Die drei Ebenen eines Schwarmes

Um verteilte, autonome Systeme im Rahmen von Swarm Computing miteinander zu verknüpfen, eignet sich am besten eine maschenförmige Peer-to-Peer-Architektur. Wichtig ist, dass die Daten, die innerhalb und außerhalb der Edge- und Swarm-Computing-Infrastruktur anfallen, valide und konsistent sind. Eine praxistaugliche Swarm-Architektur besteht aus drei Ebenen: Edge Computing, Multi-Cloud Computing und Service-Orchestrierung.

Beitrag drucken

Edge und Swarm Computing zusammendenken

Eine Swarm-Computing-Infrastruktur befähigt Fertigungsunternehmen dazu, auf Grundlage von Datenanalysen Entscheidungen zu treffen und in Aktionen umzusetzen. Eine solche Datenanalyse muss eng mit den betroffenen Geschäftsprozessen kombiniert sein. Sie kann zudem unterschiedliche Edge-Computing-Systeme und Cloud-Computing-Umgebungen mit einbeziehen – für IoT-Szenarien, die auch die vernetzte Produktion ausweiten können. (mehr …)

1 2 3


Das könnte Sie auch interessieren:

Früher war Scada oft nur zweckmäßiges Instrument zur Anlagen- und Prozessverwaltung. Doch im Zeitalter des Internet of Things und damit verbundenen neuen Geschäftsmodellen rückt auch die Bedeutung der Scada-Plattform an eine bedeutendere Stelle.‣ weiterlesen

Viele große Unternehmen investieren derzeit in Digitaltechnik, um Transparenz in ihre Lieferketten zu bringen - und so Kosten einzusparen. Mit Radio-Frequency-Identification(RFID)-Technik von Kathrein werden die Durchläufe bei einem Stuttgarter Automobilhersteller besser planbar und Wartezeiten kürzer.‣ weiterlesen

Mit der Übernahme des IoT-Spezialisten Bright Wolf, will der IT-Dienstleister Cognizant seine Expertise im Bereich Internet of Things erweitern.‣ weiterlesen

Vorherzusagen, wann ein Werkzeug kaputt geht, ist nicht leicht. Mittels der Messung von Schallemissionen ist dies zwar möglich, aber auch teuer. Kombiniert man jedoch gängige Verfahren mit neuen Technologien, ergeben sich immer bessere und schnellere Verfahren.‣ weiterlesen

Seit dem 25. Mai 2018 gilt die europäische Datenschutzgrundverordnung, meist nur DSGVO genannt. Der IT-Sicherheitsspezialist Rohde & Schwarz Cybersecurity berichtet, wie es um die Umsetzung in der hiesigen Industrie steht.‣ weiterlesen

In vielen Ländern Europas scheint sich der Arbeitsmarkt zu stabilisieren. Darauf deuten die Zahlen des Europäischen Arbeitsmarktbarometers hin, das nun erstmals veröffentlicht wurde.‣ weiterlesen

Eine IoT-Sicherheitsarchitektur sollte sowohl in IT- als auch in OT-Umgebungen für mehr Transparenz sorgen und Prozesse schützen. Dazu müssen die Daten aus dem IoT-Edge erfasst und extrahiert werden. Auf dieser Grundlage können Unternehmen effizienter agieren, bessere Geschäftsentscheidungen treffen und Digitalisierungsprojekte beschleunigen.‣ weiterlesen

GBTEC und Proalpha haben angekündigt, zukünftig in den Bereichen Process Mining und Business Intelligence zusammenzuarbeiten. Kunden sollen so einen Mehrwert bei der digitalen Transformation erhalten.‣ weiterlesen

Beim Anlagen- und Werkzeugbau setzt die Volkswagen AG auf Datendurchgängigkeit. Die Projektmanagement-Software Coman vernetzt die Projektbeteiligten dazu durchgängig und digital, bis hin zu den Zulieferern. Denn wenn Manager Giuseppe Lo Presti früh erkennt, dass es in einem Gewerk gerade nicht rund läuft, können gezielte Maßnahmen erfolgen.‣ weiterlesen

Mehr als eine Milliarde Schadprogramme verzeichnet das Bundesamt für Sicherheit in der Informationstechnik im aktuellen Lagebericht. Und auch die Corona-Pandemie wirkt sich auf die aktuelle Sicherheitslage aus.‣ weiterlesen

Eine Voraussetzung bei der Entwicklung von industriellen KI-Anwendungen sind ausreichende Daten. Diese sind jedoch nicht immer in der benötigten Menge, Qualität oder Struktur vorhanden. Anhand eines konkreten Beispiels erläutert dieser Beitrag, wie sich ein Data Lake anlegen und mit Daten füllen lässt, bis er ein Fundament für quasi beliebige KI-Applikationen bildet.‣ weiterlesen

Anzeige
Anzeige
Anzeige