Der Spielraum für Fehler ist in der Fertigung von Hightech-Elektronik sehr klein. Um die ohnehin schon geringe Fehlerrate weiter zu reduzieren, hat Seagate bei der Wafer-Fertigung KI mit industrieller Bildverarbeitung gekoppelt.
Seagate produziert jedes Jahr mehr als eine Milliarde Wandler in seiner Waferfertigung in Normandale, Minnesota, USA. Um die hohen Qualitätsstandards einzuhalten und Herstellungsfehler früh zu erkennen, müssen die Wandler umfassend analysiert und getestet werden. Die Produktion der Wandler startet mit dem Rohmaterial, das im Wesentlichen ein dünnes Halbleitersubstrat ist. Im Laufe eines fotolithografischen Prozesses wird das Substrat zu einem dünnen, flachen, kristallinen Wafer. Der Wafer wird, wenn er geschnitten und weiterverarbeitet wird, zu einem Wandler (auch bekannt als Schieberegler) – ein Element, das in der Lage ist, Daten auf eine rotierende Magnetplatte zu schreiben und sie zu lesen. Der Testprozess ist lang, komplex und erfordert viel Fingerspitzengefühl. In jedem 200mm-Wafer befinden sich 100.000 Schieber, die überprüft werden müssen. In der Fabrik in Normandale werden täglich Millionen von Mikroskopaufnahmen erzeugt. Das entspricht einem Volumen von 10 Terabyte an Daten, die gesichtet werden müssen, um mögliche Produktionsfehler zu erkennen, bevor die Wafer in Laufwerken verbaut werden.
Nur bekannte Fehler auffindbar
Bisher war es die Aufgabe der Ingenieure, all diese Bilder zu analysieren. Dies birgt ein gewisses Fehlerpotenzial, was dazu führen kann, dass defekte Wandler erst zu einem späteren Zeitpunkt im Herstellungsprozess erkannt werden und dadurch zusätzliche Kosten verursachen. Seagate benötigte eine Lösung, um mehr Bilder in kürzerer Zeit zu überprüfen. Doch selbst das Einstellen von mehr Bildanalyseexperten würde nicht ausreichen, um Millionen von Bildern zu verarbeiten. Schließlich wurde mit einer regelbasierten Bildanalyse zunächst ein erster Automatisierungsgrad erreicht. Mit diesem Ansatz ließen sich einige Anomalien identifizieren – die Voraussetzung dafür war jedoch, dass das System weiß, wonach es suchen muss. Hinzu kam, dass die Regeln manuell eingestellt werden mussten. Dies war ein zeitaufwendiger Prozess, der ständig optimiert und verfeinert werden musste. Das regelbasierte System konnte nur langsam eingerichtet und optimiert werden und lieferte dabei variable Ergebnisse. Abgesehen von einigen Fehlmeldungen des Systems konnte es durch die vorgegebenen Regeln nur bekannte Probleme erkennen. Dies führte zu dem potenziellen Risiko, dass fehlerhafte Wafer vor der Montage in Lese- und Schreibköpfe nicht erkannt werden konnten. Erst die Fortschritte in den Bereichen KI, maschinelles Lernen und Sensoren für das Internet der Dinge führte zu einer Lösung für das Problem.
Einer Lösung standen zwei große Herausforderungen im Weg: Das riesige Volumen an Daten, das im täglichen Prozess zu bewältigen war und die Beschränkung bestehender regelbasierter Analyse-Tools, die es zu umgehen galt. Traditionelle Big-Data-Programme arbeiten nach einem Batch-Prozess – dieser eignet sich jedoch nicht für eine Produktionslinie, die rund um die Uhr und 365 Tage im Jahr betrieben wird. Der erste Schritt war der Aufbau eines neuronalen Netzes (Deep Neural Network, DNN), das Erkenntnisse zur Verbesserung der Automatisierung der Erkennung von defekten Wandlern liefern konnte. Das neuronale Netz wurde mit den Grafikprozessoren Nvidia V100 und P4 sowie leistungsstarken All-Flash-Array-Systemen der Reihe Nytro X 2U24 von Seagate entwickelt.
Das KI-System Athena
In das neuronale Netz wurden Wafer-Bilder eingespeist, um das KI-System so zu trainieren, dass es zwischen intakten und fehlerhaften Wafern unterscheiden kann. Denn die Lösung namens Athena lernt genauso wie eine menschliche Ingenieurin – indem sie Tausende von Fotos betrachtet. Doch dank der leistungsstarken Verarbeitung ist sie dabei viel schneller und auch präziser als ein Mensch. Im Laufe der Zeit hat das System die Fähigkeit erworben, auch potenzielle Prozessfehler zu erkennen. Die KI markiert anomale Bilder zur manuellen Beurteilung durch einen Experten. Zusätzlich kann Athena eigene Regeln aufstellen und verfeinern. Diese basieren auf Anomalien, die während des Bildanalyseprozesses aufgespürt werden. Darüber hinaus kann Athena Bilder, die vom Elektronenmikroskop erzeugt werden, in Echtzeit verarbeiten und analysieren. Seagate ist es dadurch möglich, täglich drei Millionen Bilder zu verarbeiten und selbst winzige Defekte unverzüglich zu identifizieren, die von einem menschlichen Ingenieur schnell übersehen werden können. Die Echtzeitverarbeitung ermöglicht es den Mitarbeitern, Fehler in der Fertigung schnell zu identifizieren und zu korrigieren, sodass ihre potenziellen Auswirkungen auf den Produktionsprozess und damit einhergehende Kosten deutlich reduziert werden.
Es bleibt bei der Unterstützung
Das Projekt Athena hilft bei der Identifizierung von Mängeln. Aber es kann und wird nicht die geschulten, menschlichen Experten ersetzen. Doch aus dem Projekt resultieren besonders interessante Möglichkeiten für Seagates Wafer-Experten, mit denen sie größere Probleme neu angehen und lösen können. Das System stellt eine beispielhafte Lösung dar, die eine weitaus breitere Palette von Problemen über den Fertigungsprozess hinaus bewältigen kann. Die Fähigkeit Anomalien schneller, adaptiver und aussagekräftiger zu erkennen, erweist sich über die Produktion in Smart Factories hinaus in den unterschiedlichsten Bereichen wie öffentliche Sicherheit, autonomes Fahren und Smart Cities als nützlich. „Wir gehen davon aus, dass wir Athena zu gegebener Zeit in allen unseren Produktionsstätten einsetzen werden“, sagt Jeffrey Nygaard, Executive Vice President of Operations, Products and Technology bei Seagate. „Und da die Kosten für Mikroskopkameras und IoT-Sensoren sinken, können die gleichen Technologien auch für andere Anwendungen eingesetzt werden. Dies ist ein wegweisender erster Schritt in der intelligenten Fertigung und der Grundstein, auf dem unsere anderen Fabriken aufbauen können.“
Mittelständische Unternehmen investieren selbst in schwierigen Zeiten in Microsoft-Technologien, weil sie überzeugt sind, dass ihre Mitarbeiterproduktivität steigt und sich ihre Kostenstruktur bessert. Microsoft hat mit dem Microsoft-Partner-Network ein Netzwerk aufgebaut, das ein Forum für den Aufbau von Partnerschaften, Zugang zu Ressourcen und einen Rahmen für Dialoge und Kooperationen bietet. Für unsere Leser gibt die Microsoft-Partnerübersicht in Ausgabe Juli/August der IT&Production Tipps für die Suche nach einer geeigneten Branchen- oder Speziallösung im Bereich des produzierenden Gewerbes.
Auf der Suche nach Innovation, nach neuen Lösungen und der Abgrenzung zum Mitbewerb vernetzen sich zunehmend mehr Unternehmen mit externen Experten und Partnern. SAP hat mit dem SAP-Ecosystem ein Netzwerk aufgebaut, das ein Forum für den Aufbau von Partnerschaften, Zugang zu Ressourcen und einen Rahmen für Dialoge und Kooperationen bietet. In der Maiausgabe der Fachzeitschrift IT&Production erhalten unsere Leser einen aktuellen Überblick zum SAP-Ecosystem im Bereich des produzierenden Gewerbes.
Anbieter & Produkte
Work-in-Process-Management in S/4HANA
Qualität, Lieferketten, Rückverfolgbarkeit – Nachhaltigkeit hat viele Facetten
augmented instructions – digitalisiertes Know how unterstützt die Industrie beim Wissenstransfer
Weltweit führende APS-Technologie für alle industriellen Anforderungen
Wachstum durch Kundenorientierung: Das Geheimnis liegt in einem smarten Variantenkonfigurator
becosEPS – Enterprise Planning System
MPDV Mikrolab GmbH – WE CREATE SMART FACTORIES
IIoT in Stahl Service Centern
ANZEIGE
Whitepaper
Smart Factory Elements
Vollautomatische Feinplanung
Mit Kennzahlen die Produktion im Griff
Vom 4-Stufen-Modell zum Regelkreis
Monitoring IT, OT and IIoT with Paessler PRTG: use cases and dashboards
Videos
Erfolgreiche Asprova APS Einführung bei Prospera: Laserschneiden, Biegen und Stanzen. Aprova hat all unsere Planungsprobleme gelöst.
Erfolgreiche Asprova APS Einführung bei Fogel, Hersteller von gewerblichen Kühl- und Gefrieranlagen für Abfüller kohlensäurehaltiger Getränke
Asprova User Day 2022 in Frankfurt
Smart Factory Cloud Services
Erfolgreiche Asprova APS Einführung bei Bopisa, Hersteller von Lebensmittelverpackungen
Ein Unternehmen, das sich mit der Auswahl eines ERP- Systems befasst, muss sich gleichsam mit einem viel- schichtigen Software-Markt und unklaren Interessen- lagen an interne Abwick- lungsprozesse auseinander- setzen. Guter Rat bei der Investitionsentscheidung ist teuer. ERP/CRM Wissen Kompakt unterstützt Sie bei der gezielten Investition in die IT-Infrastruktur.
Immer mehr Anbieter von Maschinen, Automatisierungstechnik und Industriesoftware integrieren künstliche Intelligenz in ihre Produkte. Das ganze Potenzial spielen selbstlernende Systeme aber erst aus, wenn sie passgenau auf ihren Einsatz in Fertigung und Büro zugeschnitten wurden. Über beide Möglichkeiten, als Fertiger die Vorzüge von industrieller KI zu nutzen, geht es im regelmäßig aktualisierten Themenheft Künstliche Intelligenz.
Das Internet of Things verändert Produktwelten und die Vernetzung in der Fertigung gleichermaßen. Entstehende Ökosysteme laden zur einer neuen Form der Zusammenarbeit ein. Die Spezialausgabe IoT Wissen Kompakt informiert über die Technologie, Projektierung und Anbieter für die eigene Applikation, in- und außerhalb der Fabrik.
Um alle Potenziale eines MES umfassend ausnutzen zu können, beleuchten unsere Autoren in der Serie von MES Wissen Kompakt die erfolgskritischen Faktoren, um Fertigungsunternehmen präventiv zu steuern. Darüber hinaus präsentiert MES Wissen Kompakt ein breites Spektrum an Firmenportraits, Produkt- neuheiten und Dienst- leistungen im MES-Umfeld.