Anzeige
Anzeige
Beitrag drucken

Industrielle Bildverarbeitung bei Seagate

Drei Millionen Bilder pro Tag analysiert

Der Spielraum für Fehler ist in der Fertigung von Hightech-Elektronik sehr klein. Um die ohnehin schon geringe Fehlerrate weiter zu reduzieren, hat Seagate bei der Wafer-Fertigung KI mit industrieller Bildverarbeitung gekoppelt.

Bild: ©sebastianreuter/stock.adobe.com

Bild: ©sebastianreuter/stock.adobe.com

Seagate produziert jedes Jahr mehr als eine Milliarde Wandler in seiner Waferfertigung in Normandale, Minnesota, USA. Um die hohen Qualitätsstandards einzuhalten und Herstellungsfehler früh zu erkennen, müssen die Wandler umfassend analysiert und getestet werden. Die Produktion der Wandler startet mit dem Rohmaterial, das im Wesentlichen ein dünnes Halbleitersubstrat ist. Im Laufe eines fotolithografischen Prozesses wird das Substrat zu einem dünnen, flachen, kristallinen Wafer. Der Wafer wird, wenn er geschnitten und weiterverarbeitet wird, zu einem Wandler (auch bekannt als Schieberegler) – ein Element, das in der Lage ist, Daten auf eine rotierende Magnetplatte zu schreiben und sie zu lesen. Der Testprozess ist lang, komplex und erfordert viel Fingerspitzengefühl. In jedem 200mm-Wafer befinden sich 100.000 Schieber, die überprüft werden müssen. In der Fabrik in Normandale werden täglich Millionen von Mikroskopaufnahmen erzeugt. Das entspricht einem Volumen von 10 Terabyte an Daten, die gesichtet werden müssen, um mögliche Produktionsfehler zu erkennen, bevor die Wafer in Laufwerken verbaut werden.

Nur bekannte Fehler auffindbar

Bisher war es die Aufgabe der Ingenieure, all diese Bilder zu analysieren. Dies birgt ein gewisses Fehlerpotenzial, was dazu führen kann, dass defekte Wandler erst zu einem späteren Zeitpunkt im Herstellungsprozess erkannt werden und dadurch zusätzliche Kosten verursachen. Seagate benötigte eine Lösung, um mehr Bilder in kürzerer Zeit zu überprüfen. Doch selbst das Einstellen von mehr Bildanalyseexperten würde nicht ausreichen, um Millionen von Bildern zu verarbeiten. Schließlich wurde mit einer regelbasierten Bildanalyse zunächst ein erster Automatisierungsgrad erreicht. Mit diesem Ansatz ließen sich einige Anomalien identifizieren – die Voraussetzung dafür war jedoch, dass das System weiß, wonach es suchen muss. Hinzu kam, dass die Regeln manuell eingestellt werden mussten. Dies war ein zeitaufwendiger Prozess, der ständig optimiert und verfeinert werden musste. Das regelbasierte System konnte nur langsam eingerichtet und optimiert werden und lieferte dabei variable Ergebnisse. Abgesehen von einigen Fehlmeldungen des Systems konnte es durch die vorgegebenen Regeln nur bekannte Probleme erkennen. Dies führte zu dem potenziellen Risiko, dass fehlerhafte Wafer vor der Montage in Lese- und Schreibköpfe nicht erkannt werden konnten. Erst die Fortschritte in den Bereichen KI, maschinelles Lernen und Sensoren für das Internet der Dinge führte zu einer Lösung für das Problem.

Eine interne KI-Edge-Plattform

Einer Lösung standen zwei große Herausforderungen im Weg: Das riesige Volumen an Daten, das im täglichen Prozess zu bewältigen war und die Beschränkung bestehender regelbasierter Analyse-Tools, die es zu umgehen galt. Traditionelle Big-Data-Programme arbeiten nach einem Batch-Prozess – dieser eignet sich jedoch nicht für eine Produktionslinie, die rund um die Uhr und 365 Tage im Jahr betrieben wird. Der erste Schritt war der Aufbau eines neuronalen Netzes (Deep Neural Network, DNN), das Erkenntnisse zur Verbesserung der Automatisierung der Erkennung von defekten Wandlern liefern konnte. Das neuronale Netz wurde mit den Grafikprozessoren Nvidia V100 und P4 sowie leistungsstarken All-Flash-Array-Systemen der Reihe Nytro X 2U24 von Seagate entwickelt.

Das KI-System Athena

In das neuronale Netz wurden Wafer-Bilder eingespeist, um das KI-System so zu trainieren, dass es zwischen intakten und fehlerhaften Wafern unterscheiden kann. Denn die Lösung namens Athena lernt genauso wie eine menschliche Ingenieurin – indem sie Tausende von Fotos betrachtet. Doch dank der leistungsstarken Verarbeitung ist sie dabei viel schneller und auch präziser als ein Mensch. Im Laufe der Zeit hat das System die Fähigkeit erworben, auch potenzielle Prozessfehler zu erkennen. Die KI markiert anomale Bilder zur manuellen Beurteilung durch einen Experten. Zusätzlich kann Athena eigene Regeln aufstellen und verfeinern. Diese basieren auf Anomalien, die während des Bildanalyseprozesses aufgespürt werden. Darüber hinaus kann Athena Bilder, die vom Elektronenmikroskop erzeugt werden, in Echtzeit verarbeiten und analysieren. Seagate ist es dadurch möglich, täglich drei Millionen Bilder zu verarbeiten und selbst winzige Defekte unverzüglich zu identifizieren, die von einem menschlichen Ingenieur schnell übersehen werden können. Die Echtzeitverarbeitung ermöglicht es den Mitarbeitern, Fehler in der Fertigung schnell zu identifizieren und zu korrigieren, sodass ihre potenziellen Auswirkungen auf den Produktionsprozess und damit einhergehende Kosten deutlich reduziert werden.

ANZEIGE

Es bleibt bei der Unterstützung

Das Projekt Athena hilft bei der Identifizierung von Mängeln. Aber es kann und wird nicht die geschulten, menschlichen Experten ersetzen. Doch aus dem Projekt resultieren besonders interessante Möglichkeiten für Seagates Wafer-Experten, mit denen sie größere Probleme neu angehen und lösen können. Das System stellt eine beispielhafte Lösung dar, die eine weitaus breitere Palette von Problemen über den Fertigungsprozess hinaus bewältigen kann. Die Fähigkeit Anomalien schneller, adaptiver und aussagekräftiger zu erkennen, erweist sich über die Produktion in Smart Factories hinaus in den unterschiedlichsten Bereichen wie öffentliche Sicherheit, autonomes Fahren und Smart Cities als nützlich. „Wir gehen davon aus, dass wir Athena zu gegebener Zeit in allen unseren Produktionsstätten einsetzen werden“, sagt Jeffrey Nygaard, Executive Vice President of Operations, Products and Technology bei Seagate. „Und da die Kosten für Mikroskopkameras und IoT-Sensoren sinken, können die gleichen Technologien auch für andere Anwendungen eingesetzt werden. Dies ist ein wegweisender erster Schritt in der intelligenten Fertigung und der Grundstein, auf dem unsere anderen Fabriken aufbauen können.“


Das könnte Sie auch interessieren:

Wie bereits im April blieb der Auftragseingang der deutschen Maschinenbauer auch im Mai weit unter dem Niveau des Vorjahres. Die Bestellungen blieben 28 Prozent unter dem Vorjahreswert.‣ weiterlesen

Selbst in hoch automatisierten Fertigungsumgebungen gibt es Maschinenbediener, Instandhalter oder Logistikmitarbeiter, die eine Produktion beobachten und eingreifen. Und solange Menschen Verantwortung tragen, müssen Informationen im Werk vermittelt werden. Mit einer Andon-Anwendung lässt sich das motivierend und effizienzsteigernd strukturieren, gerade wenn weitere Prozessoptimierungsmethoden umgesetzt werden.‣ weiterlesen

Augenstein Maschinenbau plant, entwickelt und fertigt individuelle Automatisierungslösungen für Produktionsprozesse. Eine Visualisierungssoftware liefert dabei früh ein erstes Bild der Anlage. Das schafft Klarheit und hilft dem Vertrieb quasi nebenbei, den Auftrag überhaupt an Land zu ziehen.‣ weiterlesen

Im Projekt ‘Kitos – Künstliche Intelligenz für TSN zur Optimierung und Störungserkennung‘ arbeiten Wissenschaftler und Ingenieure gemeinsam an Lösungen für ein dynamisches Netzwerkmanagement in der Industrie.‣ weiterlesen

Laut statistischem Bundesamt hat sich die Industrie im Mai von den Einbrüchen verursacht durch die Corona-Pandemie etwas erholt. Die Produktion legte zu, verfehlt das Mai-Ergebnis des Vorjahres jedoch um 19,3 Prozent.‣ weiterlesen

Zwei Drittel (66 Prozent) der Unternehmensleiter weltweit sind optimistisch, dass sich der europäische Markt relativ schnell vom wirtschaftlichen Abschwung durch die COVID-19-Pandemie erholen wird. Das geht aus einem Report des Beratungsunternehmens Accenture hervor, der auf einer Umfrage unter fast 500 C-Level-Führungskräften in Europa, Nordamerika und im asiatisch-pazifischen Raum in 15 Branchen basiert.‣ weiterlesen

Wie die Kommunikation in der Arbeitswelt zukünftig aussehen kann, erforschen derzeit die Fraunhofer-Institute für Arbeitswirtschaft und Organisation IAO und für Produktionstechnik und Automatisierung IPA. Dabei steht der digitale Zwilling im Mittelpunkt.‣ weiterlesen

Der ERP-Anbieter Proalpha hat einen neuen Chief Sales Officer. Zum 1. Juli hat Michael T. Sander die Position übernommen. Er folgt auf Andree Stachowski.‣ weiterlesen

Ein Produkt online konfigurieren und sofort bestellen: Was für Verbraucher alltäglich ist, gewinnt auch im B2B-Bereich an Bedeutung. Mit dem Configure-Price-Quote-Ansatz und entsprechender Software kann diese Variantenvielfalt angeboten werden, ohne den Vertrieb zu überlasten oder die Customer Journey aus dem Blick zu verlieren.‣ weiterlesen

Kürzere Durchlaufzeiten, Abläufe und Sequenzen simulieren und frühe Aussagen zu Konzepten und deren Verifikationen treffen zu können - das waren die Wünsche der österreichischen SEMA Maschinenbau. Die Software IndustrialPhysics von Machineering leistet genau das.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige