Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Machine Learning für Prozessparameter

Die intelligente Werkzeugmaschine

Selbsterregte Schwingungen führen in der Zerspanung schnell zu einer schlechten Bearbeitungsqualität. Konservative Prozessstellgrößen beugen dem vor, kosten aber Produktivität. Dies kann sich nun mit Hilfe von maschinellem Lernen (ML) ändern. Mit dieser KI-Technologie können Werkzeugmaschinen aus dem Fertigungsprozess lernen, welche Stellgrößen geeignet sind und diese autonom anpassen.

Mit Sensordaten und Simulation Prozesse vollständig erfassen. (Bild: Leibniz Universität Hannover)

Mit Sensordaten und Simulation Prozesse vollständig erfassen. (Bild: Leibniz Universität Hannover)

Die Wahl von Prozessstellgrößen wie Schnittgeschwindigkeit fordert Expertenwissen sowie kosten- und zeitintensive Einfahrprozesse. Ändern sich die Prozessbedingungen, beispielsweise aufgrund thermischer Einflüsse oder Werkzeugverschleiß, sollten die Prozessstellgrößen neu angepasst werden. Nur so kann weiterhin möglichst produktiv gearbeitet werden. Eine prozessparallele, autonome Adaption ist bisher nur vereinzelt in einfachen Fällen möglich, etwa beim Vorschub. Am Institut für Fertigungstechnik und Werkzeugmaschinen (IFW) in Hannover wird erforscht, wie Werkzeugmaschinen mit künstlicher Intelligenz lernen können, welche Parameter besonders geeignet sind und wie diese autonom an die aktuelle Prozesssituation anzupassen sind. Dafür werden sowohl Prozessinformationen aus Beschleunigungs- und Dehnungssensoren, wie auch eine prozessparallele Abtragssimulation zur Ermittlung der aktuellen Eingriffsbedingungen verwendet.

Prozessstellgrößen ermitteln

Eine der größten Herausforderungen in der Zerspanung sind unerwünschte, durch den Prozess verursachte sogenannten Ratterschwingungen. Diese führen zu einer verringerten Oberflächenqualität und können Werkzeug und Maschinenkomponenten schädigen. Das Auftreten von Ratterschwingungen ist insbesondere von der eingestellten Kombination aus Schnitttiefe und Spindeldrehzahl abhängig. Für die Wahl geeigneter Parameter, die gleichzeitig zu einer hohen Produktivität und Prozessstabilität führen, werden Stabilitätskarten eingesetzt. Diese werden zur graphischen Darstellung des Verhältnisses zwischen Drehzahl und maximal erreichbarer Grenzschnitttiefe verwendet. Die Erstellung von Stabilitätskarten erfordert zeit- und kostenintensive Experimente sowie ein hohes Maß an Expertenwissen. Zeitliche Veränderungen des Schwingungsverhaltens können bei diesen Verfahren bisher nicht berücksichtigt werden. Aufgrund dessen wird eine Methode benötigt, mit der geeignete Prozessstellgrößen einfach ermittelt und im Prozess autonom angepasst werden können. Der Einsatz von Machine Learning ermöglicht es, kontinuierlich aus der Erfahrung von vorangegangen Prozessen zu lernen. Damit können Stabilitätskarten stetig besser abgebildet und schließlich zur autonomen Wahl und Adaption der Prozessstellgrößen eingesetzt werden.

Sensordaten und Simulation

Damit die Algorithmen aus den Prozessen die Zusammenhänge zwischen Schnittparametern und Schwingungsverhalten erlernen, werden Informationen über die aktuellen Eingriffsbedingungen und über die dynamischen Eigenschaften der Maschine benötigt. Dafür wurde die am IFW entwickelte Abtragssimulation CutS mit der Maschinensteuerung verknüpft, sodass aktuelle Achspositionen aus der Maschinensteuerung direkt in die Simulation übertragen werden. Die Simulation dient so als eine Art Softsensor, der prozessparallel die aktuellen Eingriffsbedingungen bestimmt. Um unerwünschte Schwingungen zu erkennen, werden am Spindelschlitten applizierte Beschleunigungs- und Dehnungssensoren verwendet. Die Daten dieser Sensoren werden zusammen mit den berechneten Eingriffsbedingungen und den aktuellen Spindeldrehzahlen aus der Maschinensteuerung in einem Echtzeitsystem erfasst und ausgewertet. Durch die gemeinsame Datenerfassung können die Sensordaten zu jedem Zeitpunkt den tatsächlichen Eingriffsbedingungen zugeordnet werden.


Das könnte Sie auch interessieren:

CIOs setzen auf Automatisierung und KI, um wachsende Kluft zwischen begrenzten IT-Ressourcen und steigender Cloud-Komplexität zu überbrücken. Dies geht aus einer Studie von Dynatrace hervor.‣ weiterlesen

Zahlreiche Geräte verbinden sich heutzutage mit dem Firmennetzwerk. Neben offensichtlichen Geräten wie Büro-PCs und Maschinensensoren gibt es meist auch solche, die keiner auf dem Radarschirm hat. In diesem verborgenen Internet of Things könnten Einfallstore für Cyberkriminelle sein.‣ weiterlesen

Die Erwartungen an die wirtschaftliche Entwicklung gehen laut aktueller ZEW-Zahlen im Oktober zurück. Die Einschätzung der aktuellen konjunkturellen Lage hat sich jedoch erneut verbessert.‣ weiterlesen

Die Verschmelzung von Operational Technology (OT) und IT bietet Vorteile. Um sie zu nutzen, müssen sich Fabrikbetreiber aber zunächst mit einem tragfähigen IT-Sicherheitskonzept befassen. Die Eckpfeiler sind Transparenz, Kontrolle und Reaktionsfähigkeit.‣ weiterlesen

Bild: DSAG Deutsche SAP Anwendergruppe e.V.

Im Rahmen der Mitgliederversammlung der Deutschsprachigen SAP-Anwendergruppe (DSAG) wurden im Vereins- und Fachvorstand insgesamt neun Positionen neu oder wieder besetzt. Unter anderem ist Jens Hungershausen neuer Vorstandsvorsitzender. ‣ weiterlesen

Der Maschinen- und Anlagenbauer Dürr beteiligt sich an der Industrial Cloud von Volkswagen und AWS. Zuerst werden Teile des DXQ-Portfolios über die Cloud bereitgestellt. Volkswagen-Werke und Partnerunternehmen des Autobauers können die Lösungen dann ähnlich wie aus einem B2C-App Store beziehen und etwa zur Produktionsoptimierung einsetzen. Der Maschinen- und Anlagenbauer verspricht sich vom Projekt hingegen, das Feedback der Anwender zur Verbesserung der eigenen Applikationen nutzen zu können.‣ weiterlesen

Die Planung der Produktion kann das Personal einige Zeit kosten. Warum also nicht eine künstliche Intelligenz einsetzen, um die Planer zu unterstützen? Auf diese Weise gelang es dem Verpackungs-Spezialisten Constantia Teich, die Termintreue zu erhöhen.‣ weiterlesen

Inmitten der sich verschärfenden Wirtschaftskrise wenden sich immer mehr Industrieunternehmen dem Industrial Internet of Things (IIoT) zu, um ihre Anlagen aus der Ferne zu überwachen und ungeplante Ausfallzeiten zu verhindern. Ein wichtiger Aspekt ist dabei die Nachrüstung alter Anlagen.‣ weiterlesen

Der Europäische Gerichtshof hat die Privacy-Shield-Vereinbarung zum Austausch von Daten zwischen der Europäischen Union und den Vereinigten Staaten anulliert. Zu unterschiedlich sei das Datenschutzniveau beider Akteure. Jürgen Litz (Bild) ist als Geschäftsführer des CRM-Softwareanbieters Cobra mit den Fallstricken beim Umgang mit personenbezogenen Daten vertraut. Seine Einschätzungen zum Urteil und zu den Alternativen für internationale Unternehmen.‣ weiterlesen

Die OPC Foundation hat das Unternehmen Emerson in den Vorstand berufen. Zudem tritt das Unternehmen auch der Field-Level-Communications-Initiative der OPC Foundation bei.‣ weiterlesen

Maschinelles Lernen und KI können einen wertvollen Beitrag zur kontinuierlichen Verbesserung der Produktion leisten. Jetzt will es Rockwell Automation seinen Anwendern mit der Lösung LogixAI besonders leicht machen, Modelle zu entwickeln, auszuführen und laufend durch ausgefeiltere Versionen zu ersetzen.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige