Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Streaming Analytics an der Netzwerkkante

Daten fließend analysiert

Wenn die eigenen Maschinen und Anlagen digital vernetzt sind, haben Unternehmen im Grunde noch nichts gewonnen. Erst durch die Auswertung der dadurch erhobenen Daten entsteht ein Mehrwert. Streaming Analytics können diese Berechnungen ganz nah an den Ort verlagern, an dem die Daten enstehen.

 (Bild: ©kentoh/stock.adobe.com)

(Bild: ©kentoh/stock.adobe.com)

Eine möglichst hohe Qualität, wenig Ausschuss und minimaler Anlagenstillstand – das sind die Ziele, denen sich Unternehmen durch den Aufbau einer modernen, vollvernetzten Produktion annähern wollen. Basierend auf einem Industrial IoT als Datenplattform sollen so nicht nur schnellere, sondern vor allem auch bessere Entscheidungen getroffen werden. Grundlage für diese Entscheidungen sind über Sensoren und andere Input-Kanäle kontinuierlich erhobene Daten. Doch diese Daten können erst dann einen Mehrwert schaffen, wenn sie auch genutzt werden. Damit aus reinen Daten möglichst früh informierte Entscheidungen werden, kommt Streaming Analytics zum Einsatz, das analytische Modelle direkt in den Datenstrom bringt und eine entsprechende Verarbeitung bereits in den Geräten direkt vor Ort – on the edge – vornimmt. Durch solche Edge Devices können die vernetzten Systeme vorausschauend und effizient auf bereits bestehende oder mit hoher Wahrscheinlichkeit auftretende Probleme adäquat reagieren.

Wissen, was passiert

Für den erfolgreichen Einsatz von Streaming Analytics gibt es zahlreiche Praxisbeispiele, die belegen, wie die oben genannten Anforderungen erfolgreich adressiert werden. Volvo Trucks und Mack Trucks setzen bereits seit rund drei Jahren auf ein System für Predictive Maintenance, um die Ausfallzeiten der Fahrzeuge zu reduzieren. Dabei infomiert das System den Fahrer in Echtzeit über den Zustand seines Lkw und zeigt ihm sogar, wo sich in der Nähe eine Werkstatt befindet, die das vom Verschleiß betroffene Ersatzteil auf Lager hat. Ein weiteres Beispiel ist der Härteofen in einer Zahnradfabrik. Um Hitzeschäden an den Keramikplatten zu vermeiden, wurden teilweise leere Behälter erhitzt – ein unnötiger Verbrauch von Ressourcen. Nach einer Vermessung des Ofens kann die optimale Betriebstemperatur nun über verschiedene Daten wie Temperaturverlauf, Druck oder Verarbeitungsgeschwindigkeit ermittelt und gesteuert werden. So lässt sich nicht nur Leerlauf vermeiden, die teuren Keramikplatten halten zudem deutlich länger.

Ressourcen schonen

Auch bei der Begrenzung von Produktionsausschuss unterstützt Streaming Analytics. Sie kommt beispielsweise bei einer Maschine zum Einsatz, die Gummidichtungen herstellt. Vor dem Einsatz vernetzter IIoT-Lösungen waren die ersten drei produzierten Chargen meist kompletter Ausschuss, da die Maschine nach und nach an die spezifischen Eigenschaften des zu verarbeitenden Kautschuks angepasst werden musste. Variable Faktoren wie Temperatur oder Viskosität sorgten dafür, dass der erste Teil des angelieferten Rohmaterials meist nicht richtig verarbeitet werden konnte. Durch die Erhebung und Auswertung von Daten stellte sich heraus, dass sich vor allem mit besseren Transportmodalitäten ein enormes Einsparpotenzial bei den Produktionsabläufen erzielen lässt. Mittlerweile werden die Informationen über Temperatur und Konsistenz des Rohmaterials über Sensoren in Lkw und Laderampe direkt bei der Anlieferung erhoben und weitergeleitet. Die Produktionsmaschine wird dann entsprechend auf die Betriebsparameter eingestellt. In einer Papierfabrik für Sanitärartikel sorgen Echtzeitdaten ebenfalls für weniger Ausschuss. Die dortigen Anlagen verarbeiten das empfindliche Rohmaterial unter hohen Temperaturen und immensem Druck. Steigt die Luftfeuchtigkeit im Gebäude, löst sich der Zellulosestoff in der Produktion auf und das Material verklumpt. Durch Streaming Analytics hat der Betreiber sowohl Wetterwerte als auch Informationen über das Innenklima im Blick, kann die Maschine also entsprechend einstellen und zeitnah auf veränderte Rahmenbedingungen reagieren. Neben der vorausschauenden Wartung, um Ausfallzeiten zu vermeiden, und der Reduzierung von Fehlproduktionen kommt Streaming Analytics auch zum Einsatz, wenn es darum geht, die vorhandene Produktionsqualität zu steigern. So können Daten beispielsweise Qualitätsunterschiede beim Output von Fräsen beschreiben, die mit bloßem Auge nicht erkennbar sind. In einem zweiten Schritt werden dann automatisch Gegenmaßnahmen eingeleitet, die eine dauerhaft hohe Produktqualität sichern.

Auf die Kommunikation kommt es an

Diese Beispiele lassen erahnen, welches Potenzial in Streaming Analytics für die Fertigungsindustrie noch schlummert. Doch es gibt noch erhebliche Herausforderungen, die vor einer Nutzung der unbestreitbaren Vorteile in großem Stil gemeistert werden müssen. Wie so oft ist dabei eine erfolgreiche Kommunikation der Schlüssel zum Erfolg – und zwar auf verschiedenen Ebenen. Die erste Ebene ist technischer Natur und beschreibt die bereits erwähnte Kommunikation zwischen Maschinen über eine gemeinsame IIoT-Plattform. Voraussetzung für einen funktionierenden Austausch ist eine konsequente Konnektivität der Anlagen. Zwar sind viele Unternehmen bereits dabei, in neue Produktionsanlagen zu investieren oder ältere Maschinen per Retrofitting nachzurüsten, doch es wird schätzungsweise noch drei bis fünf Jahre dauern, bis ein Großteil der Anlagen die Vorteile von Streaming Analytics nutzen kann. In diesem Zusammenhang spielt auch der kommende Mobilfunkstandard 5G eine wichtige Rolle, denn die größere Bandbreite macht nicht nur Edge Devices hinfällig, sie ermöglicht auch eine Analyse in Echtzeit. Mangelnde Konnektivität ist im Übrigen auch ein Grund, warum künstliche Intelligenz in der Produktion momentan noch eine geringe Rolle spielt. Ein flächendeckender Einsatz ist hier erst in zwei bis drei Jahren zu erwarten, wenn eine entsprechende Datengrundlage vorhanden ist. Die zweite Kommunikationsebene betrifft die an den Projekten beteiligten Experten, also Fachingenieure auf der einen und Data Scientists und Solution Architects auf der anderen Seite. Beide Parteien sind Experten auf ihrem Gebiet, haben aber zunächst einen vermeintlich unterschiedlichen Interessensfokus. Während der Ingenieur vorrangig daran interessiert ist, dass die Maschine läuft und möglichst viel produziert, interessiert sich der Data Scientist eher für den Zeitpunkt, die Ursachen und die Dauer eines Ausfalls. Denn aus den generierten Daten kann er dann die Produktqualität ableiten und seine statistischen Modelle verbessern. Doch die jeweiligen Ziele sind kein Widerspruch, im Gegenteil: Ein Projekt funktioniert genau dann besonders gut, wenn sich beide Seiten ergänzen und die Expertise aus ihrem jeweiligen Fachgebiet einfließen lassen.


Das könnte Sie auch interessieren:

Der Automatisierungstreff in Böblingen widmet sich vom 24. bis zum 26. März mit seinem Workshopangebot und dem Marktplatz Industrie 4.0 der digitalen Transformation.‣ weiterlesen

Mit einer Beteiligung in Höhe von etwa 28 Prozent steigt die Hörmann Gruppe, u.a. Spezialist für Tore und Zutrittskontrollsysteme, beim IT-Consulter Orbis ein.‣ weiterlesen

Beim neuen Automatisierungssystem ctrlX Automation will Bosch Rexroth klassische Grenzen zwischen Steuerungstopologien, Antriebstechnik und IT aufheben: Steuerungsseitig kommt ein einziges CPU-Modul zum Einsatz, das erst in den verschiedenen Komponenten seine spezifische Funktionalität erhält - über das Software-Ökosystem. Dieses ist offen ausgelegt und stellt Features als Apps bereit. Was Anwender davon haben? Steffen Winkler von Bosch Rexroth hat es unserer Schwesterzeitschrift SPS-MAGAZIN erzählt.‣ weiterlesen

Microlauncher sind eine Alternative zu herkömmlichen Trägerraketen. Die mittelgroßen Transportsysteme können Nutzlasten bis 350kg befördern und sollen künftig kleine Satelliten in den Weltraum bringen. Forscher am Dresdner Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS haben gemeinsam mit Raumfahrtexperten der TU Dresden ein additiv gefertigtes Raketentriebwerk mit Aerospike-Düse für Microlauncher entwickelt. Der skalierte Prototyp aus Metall soll 30 Prozent weniger Treibstoff als konventionelle Triebwerke verbrauchen.‣ weiterlesen

Der Spezialist für Nicht-Eisen-Metall-Walzwerkanlagen und Folienschneidmaschinen Achenbach Buschhütten fertigt im westfälischen Kreuztal. Von dort aus werden die zerlegten Sondermaschinen in die ganze Welt verschickt und beim Kunden final montiert. Die Prozessmanagement-Software Coman hilft bei der Arbeit vor Ort.‣ weiterlesen

Zum 1. März wird Steffen Bersch CEO der SSI Schäfer Gruppe. Bersch hatte erst zu Beginn des Jahres die Leitung von vier Geschäftsbereichen beim Maschinenbauer GEA übernommen.‣ weiterlesen

Trendthemen wie künstliche Intelligenz oder Nachhaltigkeit haben Auswirkungen auf die gesamte Supply Chain. Auf der diesjährigen Logimat, die vom 10. bis zum 12. März in Stuttgart stattfindet, zeigen mehr als 1.650 Aussteller, wo die Reise in der Intralogistik in den nächsten Jahren hingehen könnte.‣ weiterlesen

Mehr als 40 Referenten geben am 14. und 15. Mai auf der 21. Jahrestagung Production Systems Einblicke in Digitalisierungsprojekte.‣ weiterlesen

Anzeige
Anzeige
Anzeige