Anzeige
Anzeige
Beitrag drucken

Das Technologieprojekt ExDRa

KI-Systembaukasten auf Open-Source-Basis

Die Konsolidierung großer Datenmengen, um damit KI-Anwendungen für Produktionsprozesse zu entwickeln, fällt vielen Unternehmen noch schwer. Im Projekt ExDRa sollen Lösungen entstehen, die diesen Prozess spürbar vereinfachen. Dieser Text ist der Auftakt zu einer Artikelreihe zu den produktionsbezogenen Initiativen des vom BMWi geförderten Technologieprogramms Smarte Datenwirtschaft.

Bild: ©xiaoliangge/stock.adobe.com

Bild: ©xiaoliangge/stock.adobe.com

Machine-Learning-Werkzeuge kommen immer öfter auch in der Industrie zum Einsatz, denn KI-Methoden können Produktionsprozesse und Produktionsanlagen effizienter und nachhaltiger gestalten, ihre Verfügbarkeit und Flexibilität steigern und damit die Wettbewerbsfähigkeit von Unternehmen verbessern. Um eine derartige Technologie zu entwickeln, müssen die selbstlernenden Algorithmen der KI mit großen Datenmengen gefüttert werden. An die entsprechenden Daten zu kommen, ist für viele Unternehmen jedoch nicht einfach. Zwar fallen im Produktionsalltag täglich eine Vielzahl von Daten an, doch die Rohdaten sind häufig sehr heterogen und müssen zunächst aufbereitet werden, bevor sie für das maschinelle Lernen genutzt werden können. Die Daten liegen häufig nicht zentral vor, sondern sind über mehrere Standorte verteilt und dürfen etwa aus wettbewerblichen oder rechtlichen Gründen nicht einfach zusammengeführt werden. Zudem sind Data-Science-Prozesse in vielen Unternehmen explorativ. Das heißt, dass Datenwissenschaftler Hypothesen aufstellen, die erforderlichen Daten zusammenführen und verschiedene Analysen nach Mustern und Vorhersagemodellen suchen lassen, ohne dabei die Gewissheit zu haben, dass der Prozess verwertbare Ergebnisse hervorbringt. Im Zweifelsfall muss der aufwändige Vorgang von vorn begonnen werden, wodurch hohe Kosten entstehen.

Konsolidieren und verarbeiten

Das Technologieprojekt ExDRa (für bessere Lesbarkeit: Exdra), bei dem die Siemens AG, die Technische Universität Berlin, die DFKI GmbH und die Technische Universität Graz zusammenarbeiten, zielt darauf ab, diese Herausforderungen zu bewältigen. Das Projekt wird vom Technologieprogramm Smarte Datenwirtschaft des Bundesministeriums für Wirtschaft und Energie gefördert. Die dort entstehende Systemsoftware Exdra soll es Datenwissenschaftlerinnen und -wissenschaftlern künftig deutlich erleichtern, explorative Datenanalysen und beispielsweise das Training von neuronalen Netzen auf geographisch verteilten Daten durchzuführen. Die Nutzung von Rohdaten, die auf verschiedenen Systemen liegen, wird optimiert, wodurch sich Anwender nicht mit der Komplexität paralleler und verteilter Programmierung auseinandersetzen müssen. Da die Rohdaten nicht in einem Fernwartungszentrum analysiert, sondern lediglich die aggregierten Daten dorthin übertragen werden, lassen sich zudem Kommunikationskosten reduzieren, die Datensicherheit erhöhen und rechtliche Einschränkungen im Zusammenhang mit dem Datenexport umgehen.

Batch- und Stream-Analysen

Die Aufbereitung der Daten ist nur der erste Schritt. Exdra umfasst eine breite Palette von KI-Algorithmen einschließlich überwachter und unüberwachter Verfahren sowie Deep-Learning-Modellen, die zu Datenanalyse-Pipelines quer durch den Machine-Learning-Entwicklungsprozess verknüpft werden können. Da der Schwerpunkt von Exdra auf der explorativen Datenanalyse liegt, wird deren Verarbeitung hauptsächlich auf zum Zeitpunkt der Analyse bereits vorliegenden Daten im Batch Modus durchgeführt. Exdra unterstützt aber auch den Streaming Modus, bei dem die Daten kontinuierlich ausgewertet werden, während sie entstehen. Exdra ist nicht auf bestimmte Lernalgorithmen begrenzt, sondern unterstützt viele Machine-Learning-Methoden. Die Software erlaubt es somit, individuelle KI-Lösungen zu entwickeln und auch nur Daten in die Analyse mit einzubeziehen, die bestimmten Merkmalen entsprechen und tatsächlich bei der Entwicklung der spezifischen KI-Methode von Bedeutung sind.

Schauder Systemarchitektur von Exdra. (Bild: Bundesministerium für Wirtschaft und Energie)

Schauder Systemarchitektur von Exdra. (Bild: Bundesministerium für Wirtschaft und Energie)

Gemeinschaftsprojekt

Die Systemsoftware von Exdra wird auf Basis der Open-Source-Projekte SystemDS der TU Graz und Nebula Stream der TU Berlin und dem Deutschen Forschungszentrum für Künstliche Intelligenz entwickelt. Durch die Open-Source-Basis soll das System deutlich flexibler einsetzbar als ähnlich gelagerte, jedoch proprietäre Anwendungen sein, etwa von Amazon AWS Greengrass oder Google TensorFlow Federated. Anders als bei diesen Anwendungen bleiben die Rohdaten zudem auf den dezentralen Speichern und werden nicht in eine Cloud übertragen. Lediglich die Metadaten, beispielsweise die Gewichtsparameter eines neuronalen Netzes, werden zwischen den dezentralen Systemen übertragen, sodass ein Rückschluss auf die Herkunft oder gar die Daten selbst nicht möglich ist. Gleichzeitig kann die Software das Problem lösen, dass viele Daten, die für eine effektive Datenanalyse notwendig sind, aufgrund von Datenschutzbestimmungen nur begrenzt zugänglich sind. Obwohl lediglich die Metadaten ihrem Umfeld entnommen werden, ist dennoch eine Zustimmung der jeweiligen Rechteinhaber zur Nutzung der Daten notwendig. Entsprechende Anfragen können direkt über die Software gestellt werden.

ANZEIGE

Mehr Einsatzgebiete denkbar

Die Funktionsweise des Gesamtsystems wurde bereits an zwei Beispielen der Prozessindustrie erprobt, nämlich bei der Qualitätsvorhersage in der Papierproduktion sowie bei der Datenanalyse in der Produktion von Düngemittel. Zudem dient die Prozesssteuerungstechnik als Anwendungsfall beim Projektpartner Siemens AG, dessen Lösungen etwa in den Bereichen Chemie, Pharma, Wasser, Öl und Gas eingesetzt werden. Diese Bereiche bieten sich besonders an, da in diesem Kontext große Datenmengen existieren, welche über Standorte und Anlagen verteilt sind, und deren Konsolidierung technisch, ökonomisch, und rechtlich oft eingeschränkt ist. Nachdem die entwickelte Demonstrator-Software zunächst in den internen Projekten von Siemens eingesetzt und getestet wurde, soll sie auch im Rahmen weiterer Projekte in der Prozessindustrie zum Einsatz kommen. Eine Reihe von vorläufigen Ideen für Fortsetzungsanträge wurden bereits geschmiedet, wenn der 3-jährige Bewilligungszeitraum des Projekts im kommenden Jahr ausläuft. n Institut für Innovation und Technik in der VDI / VDE Innovation + Technik GmbH. Das Institut ist Teil der Begleitforschung des Technologieprogramms Smarte Datenwirtschaft und unterstützt das Technologieprojekt Exdra.


Eckdaten zur Technologie

Wie ermittelt ein Fertigungsunternehmen für sich, ob es von den Projektergebnissen profitieren kann?

Das Unternehmen bewertet, ob es verteilte Produktionsanlagen hat und eine Analyse der föderierten Produktionsdaten über mehrere Standorte hinweg Vorteile bieten könnte, die Fertigung weiter zu optimieren oder zuverlässiger und effizienter zu gestalten.

Welche IT-Infrastruktur sollte vorhanden sein, um die im Projekt entstandene Technologie zügig zu adaptieren?

ANZEIGE

Kunststoff in Form bringen

Bild: KEB Automation KG

Bild: KEB Automation KG

Sie begegnen uns in vielen Bereichen: Kunststoffprodukte. Hinter ihnen stehen Maschinen, die zuverlässig sein müssen. Ob es sich um Extrusions- oder Spritzgießtechnik handelt – KEB Automation bietet die passende Automatisierungs- und Antriebstechnik.

Für die Software ist eine dezentrale Rechnerkapazität nötig, um föderierte Algorithmen dezentral ausführen zu können. Die Vernetzung passiert über eine Cloud oder private Cloud.

Mit welchem Aufwand für die Einrichtung und Pflege der Systeme muss ein Unternehmen rechnen?

Die Installation der Software dauert etwa vier Wochen. Für die Optimierung der Modelle ist anschließend mit etwa drei bis sechs Monaten zu rechnen. Danach ist das Programm eingerichtet und muss nur noch nach Bedarf gewartet werden.

Beitrag drucken

Das Technologieprojekt ExDRa

KI-Systembaukasten
auf Open-Source-Basis

Die Konsolidierung großer Datenmengen, um damit KI-Anwendungen für Produktionsprozesse zu entwickeln, fällt vielen Unternehmen noch schwer. Im Projekt ExDRa sollen Lösungen entstehen, die diesen Prozess spürbar vereinfachen. Dieser Text ist der Auftakt zu einer Artikelreihe zu den produktionsbezogenen Initiativen des vom BMWi geförderten Technologieprogramms Smarte Datenwirtschaft. (mehr …)


Das könnte Sie auch interessieren:

Die Eclipse Foundation präsentiert in ihrem ’IoT & Edge Developer Survey 2022‘ Entwicklertrends mit Schwerpunkt auf Edge Computing, KI und Sicherheit. Die Ergebnisse sollen Aufschluss über die Nutzung von Plattformen, Bedenken von Entwicklern, Zielmärkte und mehr geben.‣ weiterlesen

Der digitale Zwilling zählt für viele zu einem Kernelement der industriellen Digitalisierung, obwohl solche Integrationen oft noch sehr komplex sind. Für eine schrittweise Einführung gilt es, die unterschiedlichen Ausprägungsformen des digitalen Zwillings zu verstehen.‣ weiterlesen

Mit Andreas Montag und Nikas Schröder hat der ERP-Spezialist AMS.Solution zwei neue Vorstandsmitglieder. Zudem wird Simone Schiffgens neue Vorstandsvorsitzende und folgt auf Manfred Deues, der in den Aufsichtsrat wechselt.‣ weiterlesen

Björn Goerke verstärkt die Führungsetage beim ERP-Anbieter ProAlpha. Als Chief Technology Officer soll er die weitere Transformation des Unternehmens in die Cloud-Ära gestalten.‣ weiterlesen

Mehr Netzwerkausfälle und längere Wiederherstellungszeit: Davon berichten CIOs und Netzwerktechniker in einer Befragung des Netzwerkspezialisten Opengear. Demnach liegt die durchschnittliche Downtime um 2 Stunden höher als 2020.‣ weiterlesen

Wie können oft verwässerte ESG-Berichte der Vergangenheit angehören? Während sich auf politischer Ebene in puncto nachhaltiges Wirtschaften einiges bewegt, kann insbesondere die technologische Seite einen Beitrag zu einer transparenteren Produktion leisten. Den Grundgedanken der Industrie 4.0 zu implementieren, ist dabei ein wichtiger Schritt.‣ weiterlesen

Mit 100,4 Punkten liegt das IAB-Arbeitsmarktbarometer auf dem tiefsten Stand seit 2020 und somit noch knapp über der neutralen Marke. Demnach sendet der Frühindikator noch leicht positive Signale.‣ weiterlesen

Die Senkung der Betriebskosten ist ein Trend bei IIoT-Installationen, was auch als Zeichen einer reifen Branche zu verstehen ist. Dabei stellen Betreiber schon bei der Architektur-Planung sicher, keine unnötigen Kostentreiber einzurichten. Das bedeutet auch, Lösungen auch mal ohne das beliebte MQTT-Protokoll durchzudenken.‣ weiterlesen

Ein Abrasivwasserstrahl bearbeitet Bauteile effektiv und fast verschleißfrei. Doch die komplexe Prozessführung und -steuerung verhinderte bislang den Durchbruch dieser Technologie in der Fertigung. Am Fraunhofer IPT entstanden jetzt ein neuer Wasserstrahlkopf und eine Software, um diese Fertigungstechnik besser und zugänglicher zu machen.‣ weiterlesen