Anzeige
Anzeige
Beitrag drucken

Anlagenpannen und Wartungskosten reduziert

Robuste Abläufe mit Predictive Maintenance

Bereits kleine Fehler im Materialflusssystem können hohe Schäden verursachen. Um dieses Risiko zu reduzieren, setzt ein Hersteller solcher Anlagen auf Predictive Maintenance. Dessen sensorüberwachte Systeme fallen seltener ungeplant aus und im Wartungsfall wird nur getauscht, was fast hinüber ist. Eine Technologie, die sich durchsetzen düfte.

 (Bild: ©zapp2photo/stock.adobe.com)

(Bild: ©zapp2photo/stock.adobe.com)

Der Zeitdruck steigt, während die Lieferkette immer komplexer wird. Dies beeinflusst auch die Störanfälligkeit. Bereits eine kleine Verzögerung bei Herstellung und Lieferung kann Komplikationen auf allen Ebenen nach sich ziehen. Produktion, Transport und Warenlagerung müssen möglichst perfekt ineinandergreifen, um Stillstandzeiten zu vermeiden und laufende Kosten gering zu halten. Eine präzise Vorhersage von Ausfällen und Schädigungen gewinnt dadurch immer mehr an Bedeutung.

Daten auf lokaler Ebene

Einst als futuristisches Konzept belächelt, ist die Anwendung von Predictive Maintenance (PdM) zwischenzeitlich in vielen Bereichen Realität. Ziel dabei ist nicht nur die Vermeidung von Stillstandzeiten in der Produktion, sondern auch die effektive Wartung einzelner Prozesskomponenten mittels der Analyse von Sensordaten. Die globale Technologieberatung DataArt hat auf dieser Basis für einen industriellen Anwender eine Cloud-basierte Predictive-Maintenance-Plattform entwickelt und installiert. Diese kann die Abnutzung von Komponenten vorhersagen, damit die erforderliche Wartung durchgeführt werden kann, bevor ein Gerät ausfällt. Der Anwender ist Spezialist für Materialflusssysteme und plant, baut sowie installiert Fördersysteme für die Verteilungsanlagen großer Logistik- und Produktionsunternehmen. Selbst kleinere Ausfälle können bei diesen Systemen einen Betrieb zum Stillstand bringen und Umsatzeinbußen in Millionenhöhe verursachen. Deshalb legt das Unternehmen großen Wert auf die Überwachung des Zustands seiner Fördersysteme, maximale Zuverlässigkeit und minimale Wartungskosten.

Cloudbasierter Datentransfer

Zur präzisen Datenaufnahme wurden an allen abbaubaren Förderteilen, einschließlich Motoren, Getrieben und Lagern, Sensoren installiert. Diese messen Temperatur, Vibration, Fördergeschwindigkeit, Leistungsaufnahme, Luftstrom, Druck und andere wichtige Variablen. Eine besondere Herausforderung bestand im Transfer der unterschiedlichen Daten. Einige Fördersysteme befinden sich in Anlagen mit geringer oder gar keiner Konnektivität und begrenzten Möglichkeiten für drahtgebundene Verbindungen. Deshalb entwickelte DataArt eine drahtlose mobile Konnektivitätslösung, um die Daten über Gateways in die Cloud und von dort in den Cloud-Speicher zu leiten. Diese abgesicherten Industrie-Gateways unterstützen viele Protokolle wie I2C, Modbus, MQTT, Rest und weitere. Die Mobilfunkverbindung ist in diesem Fall der einfachste Weg gewesen, um eine Verbindung für entfernte oder isolierte Hardwareteile herzustellen. Für höhere Zuverlässigkeit wurden Mechanismen zum Gateway-Switching eingebaut, falls eines ausfällt.

Datenanalyse und Machine Learning

Zusätzlich zur Erfassung der Echtzeit-Sensordaten sammelte das Team historische Daten, hardwarespezifische demografische Informationen, Wetter- und Geodaten, Inspektionsergebnisse, technische Handbücher und Wartungsberichte. Zusammen mit den Messdaten bieten diese die Datengrundlage für die Ausfallprognosen. Für diese Prognosen mussten auch die jeweils sinnvollsten Algorithmen für das Training der maschinellen Lernmodelle identifiziert werden. Dabei wurden für jedes Bauteil mehrere Modelle des maschinellen Lernens entwickelt, wobei jedes Modell für die Überwachung einer bestimmten Größe (Temperatur, Vibration, Leistungsaufnahme, etc.) verantwortlich ist. Jedes Modell wurde auch geschult, um den Bereich des normalen Verhaltens zu identifizieren und festzustellen, ob Abweichungen vom normalen Bereich signifikant genug sind, um Warnmeldungen zu rechtfertigen. Hier kamen Daten zum Einsatz, die in Pilotprojekten gesammelt wurden und den Zustand der Ausrüstung unter Normalbedingungen ebenso wie bei abweichendem Verhalten darstellten. Für das prädiktive Modell kamen Rohdaten zum Einsatz, für die eigentliche Darstellung speziell aufbereitete Daten. Das Modell basiert auf LTSM-Architektur und wird mit Sensordaten gespeist, um vorhersagen zu können, wie beispielsweise Maschinen unter normalen Bedingungen arbeiten. Diese Daten werden mit denen des Ist-Zustands verglichen. Jegliche Abweichung wird als Fehlfunktion behandelt. Wobei kleinere und größere Probleme in jeweils verschiedenen Warnstufen klassifiziert werden. Damit lassen sich selbst leichte Abweichungen erkennen und damit feststellen, wann welche mechanischen Teile einer Anlage sich in kritischem Zustand befinden oder nur größere Aufmerksamkeit in der Wartung erfordern.

Ohne Server vor Ort

Die vom Technologieunternehmen entwickelte serverlose, Cloud-basierte Lösung erlaubt eine kontinuierliche Überwachung kritischer Geräte und visualisiert eine Echtzeitansicht des Anlagenzustands. Zudem beinhaltet die PdM-Plattform Werkzeuge zur Datenspeicherung, Analyse und Visualisierung sowie eine leistungsstarke Alarmfunktion. Das System kann so einerseits vor ungeplanten Ausfallzeiten schützen, andererseits werden Reparaturen nur bei Bedarf ausgeführt. Wartungskosten können so reduziert und Instandhaltungsressourcen effizient verteilt werden. PdM-Lösungen wie diese werden branchenübergreifend immer häufiger realisiert. Für die Weiterentwicklung der Unternehmensabläufe und den Einsatz der Maschinen innerhalb der Produktion ist die vorausschauende Instandhaltung die nächste wichtige Entwicklung. n Consultant – Digital Transformation and IoT Solutions bei DataArt.


Das könnte Sie auch interessieren:

Zutrittskontrollsysteme dokumentieren Aufenthaltszeiten, können bei der Corona-Kontaktverfolgung unterstützen und ermöglichen die individuelle Arbeitszeiterfassung. Vor dem Hintergrund der Digitalisierung, der Pandemie sowie dem Trend zum dezentralen Arbeiten lohnt sich ein genauer Blick auf die aktuellen Anforderungen.‣ weiterlesen

Mit dem Security Operations Center will Vinci Energies Cybersecurity-Spezialisten vernetzen. Die Eröffnung ist für das zweite Halbjahr 2021 vorgesehen.‣ weiterlesen

Plus 12 Prozent im Vergleich zum Vorjahr haben die deutschen Maschinen und Anlagenbauer in Ihren Auftragsbüchern verzeichnet. Dabei kamen besonders aus dem Ausland mehr Aufträge.‣ weiterlesen

In der Softwareentwicklung gewinnen die Low- und No-Code-Plattformen zunehmend an Bedeutung. Doch neben den Vorteilen etwa in Sachen Geschwindigkeit oder Handhabung sind dem Low-/No-Code-Ansatz noch Grenzen gesetzt, etwa wenn es zu komplex wird.‣ weiterlesen

Low-Code/No-Code-Entwicklungen bieten Potenzial für Industrieunternehmen. Dadurch wird Software-Programmierung auch Mitarbeitern zugänglich, die nicht über tiefes Fachwissen verfügen. Mendix hat in einer Studie untersucht, wie es um den Low-Code/No-Code-Ansatz in Deutschland bestellt ist.‣ weiterlesen

Mit Pascal Redaoui hat Process Analytics Factory einen neuen Chief Financial Officer.‣ weiterlesen

Die Richtlinienreihe VDI/VDE 3695 'Engineering von Anlagen - Evaluieren und Optimieren des Engineerings' wurde komplett überarbeitet und an den Stand der Technik, insbesondere an Industrie-4.0-Vorgaben, angepasst. Im März 2021 erscheint Blatt 4 der Richtlinie. Es beschreibt die Hilfsmittel, die eine Engineering Organisation (EO) einsetzen beziehungsweise nutzen sollte.‣ weiterlesen

Warum liegt die mittlere Anlagenverfügbarkeit der maschinellen Fertigung im Mittelstand bei weniger als 40 Prozent? Wie kann künstliche Intelligenz helfen, dies zu verbessern? Lösungen liefert OEE.AI aus Aachen.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige