Anzeige
Anzeige
Anzeige
Beitrag drucken

Anlagenpannen und Wartungskosten reduziert

Robuste Abläufe mit Predictive Maintenance

Bereits kleine Fehler im Materialflusssystem können hohe Schäden verursachen. Um dieses Risiko zu reduzieren, setzt ein Hersteller solcher Anlagen auf Predictive Maintenance. Dessen sensorüberwachte Systeme fallen seltener ungeplant aus und im Wartungsfall wird nur getauscht, was fast hinüber ist. Eine Technologie, die sich durchsetzen düfte.

 (Bild: ©zapp2photo/stock.adobe.com)

(Bild: ©zapp2photo/stock.adobe.com)

Der Zeitdruck steigt, während die Lieferkette immer komplexer wird. Dies beeinflusst auch die Störanfälligkeit. Bereits eine kleine Verzögerung bei Herstellung und Lieferung kann Komplikationen auf allen Ebenen nach sich ziehen. Produktion, Transport und Warenlagerung müssen möglichst perfekt ineinandergreifen, um Stillstandzeiten zu vermeiden und laufende Kosten gering zu halten. Eine präzise Vorhersage von Ausfällen und Schädigungen gewinnt dadurch immer mehr an Bedeutung.

Daten auf lokaler Ebene

Einst als futuristisches Konzept belächelt, ist die Anwendung von Predictive Maintenance (PdM) zwischenzeitlich in vielen Bereichen Realität. Ziel dabei ist nicht nur die Vermeidung von Stillstandzeiten in der Produktion, sondern auch die effektive Wartung einzelner Prozesskomponenten mittels der Analyse von Sensordaten. Die globale Technologieberatung DataArt hat auf dieser Basis für einen industriellen Anwender eine Cloud-basierte Predictive-Maintenance-Plattform entwickelt und installiert. Diese kann die Abnutzung von Komponenten vorhersagen, damit die erforderliche Wartung durchgeführt werden kann, bevor ein Gerät ausfällt. Der Anwender ist Spezialist für Materialflusssysteme und plant, baut sowie installiert Fördersysteme für die Verteilungsanlagen großer Logistik- und Produktionsunternehmen. Selbst kleinere Ausfälle können bei diesen Systemen einen Betrieb zum Stillstand bringen und Umsatzeinbußen in Millionenhöhe verursachen. Deshalb legt das Unternehmen großen Wert auf die Überwachung des Zustands seiner Fördersysteme, maximale Zuverlässigkeit und minimale Wartungskosten.

Cloudbasierter Datentransfer

Zur präzisen Datenaufnahme wurden an allen abbaubaren Förderteilen, einschließlich Motoren, Getrieben und Lagern, Sensoren installiert. Diese messen Temperatur, Vibration, Fördergeschwindigkeit, Leistungsaufnahme, Luftstrom, Druck und andere wichtige Variablen. Eine besondere Herausforderung bestand im Transfer der unterschiedlichen Daten. Einige Fördersysteme befinden sich in Anlagen mit geringer oder gar keiner Konnektivität und begrenzten Möglichkeiten für drahtgebundene Verbindungen. Deshalb entwickelte DataArt eine drahtlose mobile Konnektivitätslösung, um die Daten über Gateways in die Cloud und von dort in den Cloud-Speicher zu leiten. Diese abgesicherten Industrie-Gateways unterstützen viele Protokolle wie I2C, Modbus, MQTT, Rest und weitere. Die Mobilfunkverbindung ist in diesem Fall der einfachste Weg gewesen, um eine Verbindung für entfernte oder isolierte Hardwareteile herzustellen. Für höhere Zuverlässigkeit wurden Mechanismen zum Gateway-Switching eingebaut, falls eines ausfällt.

Datenanalyse und Machine Learning

Zusätzlich zur Erfassung der Echtzeit-Sensordaten sammelte das Team historische Daten, hardwarespezifische demografische Informationen, Wetter- und Geodaten, Inspektionsergebnisse, technische Handbücher und Wartungsberichte. Zusammen mit den Messdaten bieten diese die Datengrundlage für die Ausfallprognosen. Für diese Prognosen mussten auch die jeweils sinnvollsten Algorithmen für das Training der maschinellen Lernmodelle identifiziert werden. Dabei wurden für jedes Bauteil mehrere Modelle des maschinellen Lernens entwickelt, wobei jedes Modell für die Überwachung einer bestimmten Größe (Temperatur, Vibration, Leistungsaufnahme, etc.) verantwortlich ist. Jedes Modell wurde auch geschult, um den Bereich des normalen Verhaltens zu identifizieren und festzustellen, ob Abweichungen vom normalen Bereich signifikant genug sind, um Warnmeldungen zu rechtfertigen. Hier kamen Daten zum Einsatz, die in Pilotprojekten gesammelt wurden und den Zustand der Ausrüstung unter Normalbedingungen ebenso wie bei abweichendem Verhalten darstellten. Für das prädiktive Modell kamen Rohdaten zum Einsatz, für die eigentliche Darstellung speziell aufbereitete Daten. Das Modell basiert auf LTSM-Architektur und wird mit Sensordaten gespeist, um vorhersagen zu können, wie beispielsweise Maschinen unter normalen Bedingungen arbeiten. Diese Daten werden mit denen des Ist-Zustands verglichen. Jegliche Abweichung wird als Fehlfunktion behandelt. Wobei kleinere und größere Probleme in jeweils verschiedenen Warnstufen klassifiziert werden. Damit lassen sich selbst leichte Abweichungen erkennen und damit feststellen, wann welche mechanischen Teile einer Anlage sich in kritischem Zustand befinden oder nur größere Aufmerksamkeit in der Wartung erfordern.

Ohne Server vor Ort

Die vom Technologieunternehmen entwickelte serverlose, Cloud-basierte Lösung erlaubt eine kontinuierliche Überwachung kritischer Geräte und visualisiert eine Echtzeitansicht des Anlagenzustands. Zudem beinhaltet die PdM-Plattform Werkzeuge zur Datenspeicherung, Analyse und Visualisierung sowie eine leistungsstarke Alarmfunktion. Das System kann so einerseits vor ungeplanten Ausfallzeiten schützen, andererseits werden Reparaturen nur bei Bedarf ausgeführt. Wartungskosten können so reduziert und Instandhaltungsressourcen effizient verteilt werden. PdM-Lösungen wie diese werden branchenübergreifend immer häufiger realisiert. Für die Weiterentwicklung der Unternehmensabläufe und den Einsatz der Maschinen innerhalb der Produktion ist die vorausschauende Instandhaltung die nächste wichtige Entwicklung. n Consultant – Digital Transformation and IoT Solutions bei DataArt.


Das könnte Sie auch interessieren:

Recalo aus Laatzen ist auf Dienstleistungen im Bereich Asset- und Ladungsträger-Management spezialisiert. Vor allem beim Pooling von Mehrwegladungsträgern richtet sich der Anbieter mit einem sehr individualisierbaren Angebot an Fertigungsunternehmen.‣ weiterlesen

Lieferkettenschwierigkeiten verursachen rund 20 Prozent der Kosten von Fertigungsunternehmen, errechnen Fachleute. Robotergestützte Prozessautomatisierung kann viele der Stolpersteine aus dem Weg räumen, die zu diesen Ausgaben führen. Denn sie machen keine Fehler, halten sich an Regeln und arbeiten pausenlos - im Büro, Lieferantenmanagement und bei der Prozessoptimierung.‣ weiterlesen

Stimmen die Artikeldaten? Sind die Stammdaten genau und rechtskonform? Diese Fragen entscheiden über die Qualität fundamentaler Datenquellen. Wenn sich Fehler in die Stammdaten eingeschlichen haben, wirken sie womöglich quer durch alle Datenbanken und Prozesse hindurch. Diese und weitere Stolpersteine fasst folgende Checkliste zusammen.‣ weiterlesen

Viele neue Produkte und Geschäftsmodelle erfahren heutzutage Geburtshilfe durch Simulation. Mit digitalen Zwillingen verschmelzen Grenzen zwischen simulierten und realen Produktwelten. Entwicklung und Fertigung lassen sich so deutlich effizienter organisieren.‣ weiterlesen

Nach ersten Schätzungen geht das Ifo-Institut von einer Stagnation der Wirtschaftsleistung im ersten Quartal aus. Erst im zweiten Quartal gehen die Experten wieder von einem Zuwachs aus.‣ weiterlesen

Die Forschungspartner Technische Hochschule Deggendorf und die Technische Universität München sowie den beiden Unternehmen Schindler & Schill (EasyLogix) und Systema haben das BMWi-ZIM-Projekt MobiCM erfolgreich abgeschlossen. Ziel war die Entwicklung eines Systems zur Zustandsüberwachung von Produktionsmaschinen.‣ weiterlesen

Die Engineering-Plattform DesignSpark von RS Components hat die Marke von einer Million Mitglieder geknackt. Seit seiner Einführung 2010 unterstützt die Plattform Ingenieure, Techniker und Studierende mit einer Vielzahl an technischen Tools und Ressourcen.‣ weiterlesen

Die Normungsorganisationen DIN und VDE DKE haben eine Kooperationsvereinbarung mit 'Enterprise Singapore' getroffen. Die Zusammenarbeit soll unter anderem die Bereiche Industrie 4.0 sowie künstliche Intelligenz umfassen.‣ weiterlesen

Als globale Krise ist die Corona-Pandemie eine besondere Herausforderung für die Automobilindustrie. Der Absatz neuer PKW ging weltweit um 23 Prozent, in Europa sogar um 27 Prozent zurück. VDA-Geschäftsführer Dr. Kurt-Christian Scheel erläutert, wie sich die Branche gegen die Krise stemmt und dabei ihre Flexibilität unter Beweis stellt.‣ weiterlesen

Pandemien gehören im aktuellen Allianz-Risiko-Barometer zu den größten Bedrohungen für Unternehmen. Die damit einhergehenden Sorgen haben sogar den Klimawandel verdrängt, der in der aktuellen Erhebung den 9. Platz belegt.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige