Anzeige
Anzeige
Anzeige
Beitrag drucken

Anlagenpannen und Wartungskosten reduziert

Robuste Abläufe mit Predictive Maintenance

Bereits kleine Fehler im Materialflusssystem können hohe Schäden verursachen. Um dieses Risiko zu reduzieren, setzt ein Hersteller solcher Anlagen auf Predictive Maintenance. Dessen sensorüberwachte Systeme fallen seltener ungeplant aus und im Wartungsfall wird nur getauscht, was fast hinüber ist. Eine Technologie, die sich durchsetzen düfte.

 (Bild: ©zapp2photo/stock.adobe.com)

(Bild: ©zapp2photo/stock.adobe.com)

Der Zeitdruck steigt, während die Lieferkette immer komplexer wird. Dies beeinflusst auch die Störanfälligkeit. Bereits eine kleine Verzögerung bei Herstellung und Lieferung kann Komplikationen auf allen Ebenen nach sich ziehen. Produktion, Transport und Warenlagerung müssen möglichst perfekt ineinandergreifen, um Stillstandzeiten zu vermeiden und laufende Kosten gering zu halten. Eine präzise Vorhersage von Ausfällen und Schädigungen gewinnt dadurch immer mehr an Bedeutung.

Daten auf lokaler Ebene

Einst als futuristisches Konzept belächelt, ist die Anwendung von Predictive Maintenance (PdM) zwischenzeitlich in vielen Bereichen Realität. Ziel dabei ist nicht nur die Vermeidung von Stillstandzeiten in der Produktion, sondern auch die effektive Wartung einzelner Prozesskomponenten mittels der Analyse von Sensordaten. Die globale Technologieberatung DataArt hat auf dieser Basis für einen industriellen Anwender eine Cloud-basierte Predictive-Maintenance-Plattform entwickelt und installiert. Diese kann die Abnutzung von Komponenten vorhersagen, damit die erforderliche Wartung durchgeführt werden kann, bevor ein Gerät ausfällt. Der Anwender ist Spezialist für Materialflusssysteme und plant, baut sowie installiert Fördersysteme für die Verteilungsanlagen großer Logistik- und Produktionsunternehmen. Selbst kleinere Ausfälle können bei diesen Systemen einen Betrieb zum Stillstand bringen und Umsatzeinbußen in Millionenhöhe verursachen. Deshalb legt das Unternehmen großen Wert auf die Überwachung des Zustands seiner Fördersysteme, maximale Zuverlässigkeit und minimale Wartungskosten.

Cloudbasierter Datentransfer

Zur präzisen Datenaufnahme wurden an allen abbaubaren Förderteilen, einschließlich Motoren, Getrieben und Lagern, Sensoren installiert. Diese messen Temperatur, Vibration, Fördergeschwindigkeit, Leistungsaufnahme, Luftstrom, Druck und andere wichtige Variablen. Eine besondere Herausforderung bestand im Transfer der unterschiedlichen Daten. Einige Fördersysteme befinden sich in Anlagen mit geringer oder gar keiner Konnektivität und begrenzten Möglichkeiten für drahtgebundene Verbindungen. Deshalb entwickelte DataArt eine drahtlose mobile Konnektivitätslösung, um die Daten über Gateways in die Cloud und von dort in den Cloud-Speicher zu leiten. Diese abgesicherten Industrie-Gateways unterstützen viele Protokolle wie I2C, Modbus, MQTT, Rest und weitere. Die Mobilfunkverbindung ist in diesem Fall der einfachste Weg gewesen, um eine Verbindung für entfernte oder isolierte Hardwareteile herzustellen. Für höhere Zuverlässigkeit wurden Mechanismen zum Gateway-Switching eingebaut, falls eines ausfällt.

Datenanalyse und Machine Learning

Zusätzlich zur Erfassung der Echtzeit-Sensordaten sammelte das Team historische Daten, hardwarespezifische demografische Informationen, Wetter- und Geodaten, Inspektionsergebnisse, technische Handbücher und Wartungsberichte. Zusammen mit den Messdaten bieten diese die Datengrundlage für die Ausfallprognosen. Für diese Prognosen mussten auch die jeweils sinnvollsten Algorithmen für das Training der maschinellen Lernmodelle identifiziert werden. Dabei wurden für jedes Bauteil mehrere Modelle des maschinellen Lernens entwickelt, wobei jedes Modell für die Überwachung einer bestimmten Größe (Temperatur, Vibration, Leistungsaufnahme, etc.) verantwortlich ist. Jedes Modell wurde auch geschult, um den Bereich des normalen Verhaltens zu identifizieren und festzustellen, ob Abweichungen vom normalen Bereich signifikant genug sind, um Warnmeldungen zu rechtfertigen. Hier kamen Daten zum Einsatz, die in Pilotprojekten gesammelt wurden und den Zustand der Ausrüstung unter Normalbedingungen ebenso wie bei abweichendem Verhalten darstellten. Für das prädiktive Modell kamen Rohdaten zum Einsatz, für die eigentliche Darstellung speziell aufbereitete Daten. Das Modell basiert auf LTSM-Architektur und wird mit Sensordaten gespeist, um vorhersagen zu können, wie beispielsweise Maschinen unter normalen Bedingungen arbeiten. Diese Daten werden mit denen des Ist-Zustands verglichen. Jegliche Abweichung wird als Fehlfunktion behandelt. Wobei kleinere und größere Probleme in jeweils verschiedenen Warnstufen klassifiziert werden. Damit lassen sich selbst leichte Abweichungen erkennen und damit feststellen, wann welche mechanischen Teile einer Anlage sich in kritischem Zustand befinden oder nur größere Aufmerksamkeit in der Wartung erfordern.

Ohne Server vor Ort

Die vom Technologieunternehmen entwickelte serverlose, Cloud-basierte Lösung erlaubt eine kontinuierliche Überwachung kritischer Geräte und visualisiert eine Echtzeitansicht des Anlagenzustands. Zudem beinhaltet die PdM-Plattform Werkzeuge zur Datenspeicherung, Analyse und Visualisierung sowie eine leistungsstarke Alarmfunktion. Das System kann so einerseits vor ungeplanten Ausfallzeiten schützen, andererseits werden Reparaturen nur bei Bedarf ausgeführt. Wartungskosten können so reduziert und Instandhaltungsressourcen effizient verteilt werden. PdM-Lösungen wie diese werden branchenübergreifend immer häufiger realisiert. Für die Weiterentwicklung der Unternehmensabläufe und den Einsatz der Maschinen innerhalb der Produktion ist die vorausschauende Instandhaltung die nächste wichtige Entwicklung. n Consultant – Digital Transformation and IoT Solutions bei DataArt.


Das könnte Sie auch interessieren:

Forscher des Fraunhofer-Instituts für Produktionstechnologie IPT arbeitet mit Partnern an neuen Remote-Service-Lösungen. Dabei sollen erste Branchenstandards für Augmented-Reality-Anwendungen in der Produktion entstehen.‣ weiterlesen

Mit einem leichten Anstieg um 0,1 Punkte gegenüber dem Vormonat zeigt sich das IAB-Arbeitsmarktbarometer im Oktober stabil.‣ weiterlesen

Der Verkaufswert von professionellen Servicerobotern ist weltweit um 32 prozent auf 11,2 Milliarden US-Dollar gestiegen (2018-2019). Im laufenden Jahr bekommt der Markt weitere Impulse von der COVID-19-Pandemie: Das zeigt beispielsweise die große Nachfrage nach Desinfektionsrobotern, Logistikrobotern in Fabriken und Lagerhäusern oder nach Robotern für die Zustellung von Waren bis an die Haustür.‣ weiterlesen

Der Schweizer Automobilzulieferer Feintool setzt bei seinem weltweiten Vertrieb auf Dynamics 365 Sales. Doch der Markt ist komplex und vor allem bei der Preisbildung ist Fingerspitzengefühl gefragt. Das digitale Rückgrat dieser Aufgabe bildet die CRM-Software von Microsoft, die nach einem Upgrade eine 30 Prozent schnellere Preiskalkulation ermöglicht.‣ weiterlesen

Kabellose Kommunikation in der Industrie ist oft limitiert - sei es durch die endliche Anzahl der nutzbaren Geräte oder die Menge der übertragbaren Daten. Mit 5G sollen solche Probleme bald der Vergangenheit angehören. Vielerorts können private Kommunikationsnetze, sogenannte Campusnetze, eine sinnvolle Lösung sein. Doch in welchen Szenarien nutzen solche Netze und vor allem, was kosten Einrichtung und Betrieb?‣ weiterlesen

Erstmals nach fünf Anstiegen in Folge ist der Ifo-Geschäftsklima-Index im Oktober wieder gesunken. Im Verarbeitenden Gewerbe liegt der Geschäftsklimaindikator allerdings erstmals seit Juni 2019 wieder im positiven Bereich.‣ weiterlesen

Die europäischen Produktionsstandorte des Embedded-Spezialisten Kontron sollen zu einem EMS/ODM-Verbund zusammengeschlossen werden.‣ weiterlesen

Im Rahmen einer Partnerschaft vertreibt Siemens zukünftig die Lösung Moby.Check des Digitalisierungsspezialisten Log.Go.Motion.‣ weiterlesen

Der Softwarekonzern SAP hat seine Zahlen für das dritte Quartal 2020 veröffentlicht. Demnach erzielte der Softwarekonzern weniger Umsatz als noch im Vorjahresquartal. Das Cloudgeschäft legte hingegen zu.‣ weiterlesen

Die Komplexität vieler Produkte erfordert mehr denn je die interdisziplinäre Zusammenarbeit der Produktentwickler und eine engmaschige Kundenkommunikation. Dabei fokussiert die kollaborative Engineering-Software auf dem Markt bislang meist das Projektmanagement und die Verwaltung von Design-, Entwicklungs- und Fertigungsdaten. Virtual-Reality- und Augmented-Reality-Technologie kann die Zusammenarbeit wirkungsvoll um visuelle Aspekte ergänzen.‣ weiterlesen

Zum 1. November wird Dr. Marianne Janik die Leitung von Microsoft Deutschland von Sabine Bendiek übernehmen, die zu SAP wechseln wird.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige