Anzeige
Beitrag drucken

Analysewerkzeuge für die Big-Data-Welt

KI und maschinelles Lernen für die Produktion

Mit der Inititative ‚Industrie 4.0‘ versuchen Wirtschaft, Politik und Wissenschaft seit 2012, die hiesigen industriellen Wertschöpfungsnetzwerke wettbewerbs- und zukunftsfähig zu erhalten. KI und Machine Learning spielen dabei eine immer wichtigere Rolle.

‘Made in Germany’ steht seit Jahrzehnten für die Qualität deutscher Ingenieursleistungen. Allerdings stehen das produzierende Gewerbe und seine Ingenieure zunehmend im internationalen Wettbewerb – mit dem bekannten Druck auf Kosten, Zeit und Qualität. Das Strategieprogramm Industrie 4.0 setzt hier an. (Bild: ©xiaoliangge/stock.adobe.com)

‘Made in Germany’ steht seit Jahrzehnten für die Qualität deutscher Ingenieursleistungen. Allerdings stehen das produzierende Gewerbe und seine Ingenieure zunehmend im internationalen Wettbewerb – mit dem bekannten Druck auf Kosten, Zeit und Qualität. Das Strategieprogramm Industrie 4.0 setzt hier an. (Bild: ©xiaoliangge/stock.adobe.com)

Bei Industrie 4.0 geht es um die die durchgängige Vernetzung und Durchdringung aller Komponenten der Fabrik sowie kompletter Wertschöpfungsketten mit Sensorik, eingebetteten Systemen und Kommunikationstechnik – sogenannte cyberphysischen Systeme. Dadurch fallen große Mengen an Daten an, die wiederum die Grundlage für moderne Analyse- und Auswerteverfahren sind, die heute als künstliche Intelligenz (KI) bezeichnet werden. Heute geht man allgemein davon aus, dass KI eine Schlüsseltechnologie ist, mit der Anwender in allen Stufen der Wertschöpfung hohe Verbesserungspotenziale ausschöpfen können. Aktuelle Studien attestieren Deutschland zwar eine gute Position in der KI-Forschung, den USA aber eine wesentlich höhere Wettbewerbsfähigkeit in den KI-Anwendungen. China investiert massiv in künstliche Intelligenz, sodass chinesische Unternehmen in wenigen Jahren auf den deutschen Markt für KI-Anwendungen in der Produktion drängen werden. Darum ist es richtig, dass die Bundesregierung in ihrer KI-Strategie das Ziel formuliert, Deutschland und Europa zu einem führenden KI-Standort zu machen [2]. Die GAIA-X-Initiative als Netzwerk von Cloudplattformen und Diensten, z.B. Industrial Data Analytics unterstreichen diesen Anspruch. Die Industrielle Produktion ist dabei eines der wichtigsten Anwendungsfelder. In Demo-Fabriken und anhand konkreter Anwendungsfälle aus der industriellen Fertigung arbeitet auch das Fraunhofer IOSB an KI-Methoden und -Werkzeugen.

Ressource Kontextwissen

In der Produktion sind Daten immer im Kontext des Produkts oder der Prozesse zu interpretieren – dann sind sie wertvolle Ressourcen, um den Wertschöpfungsprozess zu verbessern oder neue Geschäftsmodelle zu entwickeln [3]. Das heißt auch, dass jeder Anwendungsfall seine spezifischen Daten erfordert. Datengestützte Werkzeuge können aber nur dann Mehrwert liefern, wenn die relevanten Aspekte von den erhobenen Daten abgedeckt werden. Daher ist es wichtig, die richtigen bzw. qualitativ hochwertige Daten aufzunehmen. Eine Hürde zum Einsatz von KI liegt derzeit noch darin, diese hochwertigen Datensätze in einem heterogenen Umfeld aus Automatisierungstechnik und Unternehmens-IT zu gewinnen: Entweder stammen die Daten aus den Maschinensteuerungen oder aus existierender bzw. nachgerüsteter Sensorik [4], die Anwender und Machine-Learning-Anbieter gemeinsam auswählen und installieren sollten. Danach ist festzulegen, welche Granularität der Daten für eine bestimmte Aufgabe erforderlich ist, wie Daten aus verschiedenen Quellen zusammengeführt werden können und in welchem Format sie übertragen und gespeichert werden. Dabei ist zu beachten, die für den Anwendungsfall richtigen Daten auszuwählen, und dann die vorhandenen Datensätze zu sortieren und sie für eine nachfolgende Modellbildung aufzubereiten. Mit den Plug&Work-Lösungsbausteinen werden auch Komponenten und Maschinen zu Datenlieferanten, die heute noch nicht vernetzt sind. Zu berücksichtigen sind außerdem Know-how zu den Themen Datensicherheit und Datenschutz, denn mehr Vernetzung bedeutet höhere Anfälligkeit gegen Cyberangriffe. Heute sind jedoch viele Technologien bereits verfügbar, deren richtiger Einsatz dafür sorgt, dass Anwender die Hoheit über Ihre Daten behalten. Entscheidend ist eine passgenaue und sichere IT-Architektur für das Sammeln, Speichern und Auswerten der Daten.


Das könnte Sie auch interessieren:

Bereits im September hatte der Augsburger Roboterhersteller Kuka Restrukturierungsmaßnahmen angekündigt. Die Geschäftsführung hat nun ein entsprechendes Konzept vorgelegt. Demnach soll ein Teilbereich im Robotics-Segment neu ausgerichtet werden.‣ weiterlesen

Auch in ERP-Systemen auf Cloud-Basis kann KI-Technologie ihr Potenzial entfalten. Sie analysiert enorme Datenmengen in Sekundenbruchteilen, startet eigenständig Prozesse und gibt Handlungsempfehlungen. Grenzen für ihren Einsatz setzt aber der Gesetzgeber.‣ weiterlesen

Klaus Hübschle tritt Anfang 2020 die Nachfolge von Andreas Börngen als CEO von M&M Software an.‣ weiterlesen

Econ Solutions hat mit Philip Würfel einen neuen Geschäftsführer. Er tritt die Nachfolge von Dr. Stephan Theis an.‣ weiterlesen

Wohin entwickeln sich die Fabriken in den nächsten Jahren? Philipp Wallner von MathWorks wagt die Prognose, das fünf Faktoren darunter sein werden, die individuelles Fertigen und Ressourceneffizienz in Einklang bringen.‣ weiterlesen

Der einzige Trost beim Thema künstliche Intelligenz und Cybersicherheit? Dass auch die Angreifer nicht verstehen, wie die technologische Black Box KI genau funktioniert. Steve Rymell, Technikchef bei Airbus CyberSecurity, berichtet über die Notwendigkeit, künstliche Intelligenz auf dem Feld der IT-Sicherheit im Auge zu behalten - ohne ihr freilich einen Sonderstatus zuzuweisen.‣ weiterlesen

Weltweit streben Unternehmen nach digitalisierten Produktionsumgebungen. Schließlich verhelfen vernetzte Maschinen zu mehr Transparenz, Einsparpotentiale werden offenbar und die Produktionsplanung endlich realistischer. Doch vor der Vernetzung muss deren Zweck möglichst klar definiert sein, und auch das Koppeln der Maschinen selbst braucht Sachverstand.‣ weiterlesen

Dietmar Heinrich wird neuer Finanzvorstand der Dürr AG. Zudem ernannte der Aufsichtsrat Dr. Jochen Weyrauch zum stellvertretenden Vorstandsvorsitzenden.‣ weiterlesen

Die Maschinenbauer aus Deutschland müssen sich in einem zunehmend schwierigeren wirtschaftlichen Umfeld behaupten. Das Jahr 2019 war geprägt von einer schwachen Weltkonjunktur, immer härteren Drohungen und Sanktionen in den globalen Handelsstreitigkeiten, sowie einem tiefgreifenden Strukturwandel in der Autoindustrie.‣ weiterlesen

Nach einer Studie von Gartner soll bis 2022 der Geschäftswert von KI auf 2,85 Billionen Euro steigen. Der Löwenanteil davon wird voraussichtlich auf den Bereich der Kundenerfahrung entfallen, für das schon ausgereifte Tools am Markt existieren. Dieser Überblick zeigt, wie es heute um KI im Field Service Management steht und wohin die Reise geht.‣ weiterlesen

Anzeige
Anzeige
Anzeige