Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Reinforced Learning in der Fertigungsplanung

Ablösung für die Heuristik

Ein wesentliches Ziel der Fertigungsplanung ist die optimale Auslastung der Produktion. Mit Algorithmen zum Reinforcement Learning lassen sich hervorragende Planungsergebnisse erzielen.

 (Bild: ©ipopba/stock.adobe.com)

(Bild: ©ipopba/stock.adobe.com)

Muss ein Fertigungsplaner 500 Arbeitsgänge einplanen, stehen ihm 101000 mögliche Reihenfolgen für die Arbeitsgänge zur Verfügung. Das sind mehr, als es Atome im Universum gibt. Weitere Faktoren, welche die Produktion beeinflussen, sind beispielsweise Werkzeuge, Material und Personal. Diese Restriktionen müssen für eine optimale Auslastung ebenfalls berücksichtigt werden.

Heutige Fertigungsplanung

Bereits heute bieten Manufacturing-Execution-Systeme (MES) Funktionen zur automatischen Planung von Fertigungsaufträgen an. Auf Basis von Heuristiken kann eine automatische Zuweisung von Aufträgen und deren Arbeitsgängen auf die Arbeitsplätze und Maschinen erfolgen. Heuristiken haben das Ziel, mit begrenztem Wissen und wenig Zeit ein praktikables Ergebnis zu erzielen. Aufgrund der in der Vergangenheit verfügbaren Rechnerleistungen war die heuristische Planung lange Zeit die beste mathematische Herangehensweise, die für die automatische Planung einsetzbar war. Die Heuristik setzt dabei im Wesentlichen auf eine Schritt-für-Schritt-Planung. Demnach wird ein Arbeitsgang nach dem anderen bestmöglich gemäß feststehender Vorgaben eingeplant. Hierbei wird nur bedingt berücksichtigt, welche Arbeitsgänge noch einzuplanen sind und wie sich die Planungsaktion des aktuellen Arbeitsgangs auf zukünftige Arbeitsgänge auswirkt. Auch werden bereits getroffene Planungsentscheidungen nur unter bestimmten Bedingungen hinterfragt oder rückgängig gemacht. Das resultierende Planungsergebnis kennzeichnet sich oftmals durch hohe Rüstaufwände, lange Durchlaufzeiten und daraus resultierend Terminverzüge.

Fertigungsplanung mit KI

In der heutigen Zeit sind jedoch deutlich leistungsfähigere Rechner verfügbar als früher, mit denen signifikant größere Datenmengen verarbeitet und immer bessere Algorithmen entwickelt werden können. Mit der Weiterentwicklung der Technik kann nun ein entscheidender Schritt in Richtung optimale Fertigungsplanung gemacht werden. Durch die Integration von KI ins MES kann eine Automatisierung von intelligentem Verhalten umgesetzt werden. Reinforcement Learning ermöglicht eine intelligente und ganzheitliche Planung der Fertigung. Im Gegensatz zum schrittweisen Vorgehen der Heuristik, werden nun zahlreiche Entscheidungsmöglichkeiten geprüft, bevor eine endgültige Planungsentscheidung getroffen wird. Reinforcement Learning, was als verstärkendes Lernen übersetzt werden kann, bewertet die getroffenen Entscheidungen, hinterfragt diese und lernt daraus. Der Algorithmus lernt somit mit jeder Entscheidung Neues über die vorhandenen Daten und kann bei jeder durchzuführenden Planungsentscheidung bessere Entscheidungen treffen. Hierbei werden nicht alle Planungsentscheidungsmöglichkeiten geprüft, sondern aktiv nur diejenigen, die gute Ergebnisse liefern werden. Daraus resultiert eine weitsichtige Entscheidungsfindung unter Berücksichtigung von noch durchzuführenden Planungsaktionen.


Das könnte Sie auch interessieren:

Harting und Expleo haben im Rahmen der SPS 2019 in Nürnberg eine Kooperationsvereinbarung geschlossen. Vorstandsvorsitzender Philip Harting und Peter Seidenschwang, Head of Industry bei Expleo Germany, unterzeichneten die Vereinbarung, mit der beide Parteien die langfristige Zusammenarbeit im Bereich datengesteuerter Dienste und IoT-Lösungen für Industriekunden bekräftigen.‣ weiterlesen

Laut einer Accenture-Studie können Unternehmen, die in die Skalierung von Technologieinnovationen investieren, mehr als doppelt so hohe Umsatzwachstumsraten erzielen. Dies betrifft in der Studie lediglich zehn Prozent der befragten Unternehmen.‣ weiterlesen

Mit steigender Auftragszahl stieß das ERP-System der ITV GmbH an seine Grenzen. Viele Prozesse erforderten zudem noch viel Handarbeit, etwa beim Einpflegen von Daten. Diese dokumentenbasierten Prozesse sollten mit einer Branchenlösung künftig digital ablaufen.‣ weiterlesen

Digitalgestützte Assistenzsysteme gewinnen in Fabriken an Bedeutung. Gerade komplexe Fertigungsaufgaben lassen sich so schnell, mit weniger Fehlern und von geringer qualifizierten Mitarbeitern ausüben. Für eine Studie haben 144 Produktionsverantwortliche darüber gesprochen, wie es in ihren Werken um die digitale Assistenz bestellt ist.‣ weiterlesen

Laut aktueller Zahlen des ZEW — Leibniz-Zentrum für Europäische Wirtschaftsforschung, blickt die Deutsche Wirtschaft zuversichtlicher in die Zukunft, als noch Ende des vergangenen Jahres. Im Vergleich zum Dezember stieg der Wert der Konjunkturerwartungen um 16 Punkte.‣ weiterlesen

Um Mobilität in Zeiten von Verstädterung, Ressourcenknappheit und Klimawandel zukunftsfest zu machen, bündeln die Universität Stuttgart und das Karlsruher Institut für Technologie (KIT) ihre Forschungskompetenzen im Innovationscampus ‘Mobilität der Zukunft‘ (ICM).‣ weiterlesen

Viele Unternehmen haben das Thema Kundenbeziehungsmanagement auf ihrer digitalen Agenda. Und es geht voran, gerade im Maschinen- und Anlagenbau. Eine aktuelle Umfrage zeigt aber auch, woran es auf dem Weg zur 360°-Kundensicht noch hakt.‣ weiterlesen

Mixaco stellt Industriemischer für Chemikalien, Farben und Kunststoffe her. Jetzt hat die Firma ihr Angebot um eine IoT-Lösung erweitert, mit der Anlagenbetreiber die Leistung ihrer Maschinen online überwachen und sie vorausschauend warten können. In Verbindung mit anderen Bausteinen der IoT-Plattform sind aber noch viel mehr Anwendungen möglich.‣ weiterlesen

Im 23. Global CEO Survey von PWC rechnet mehr als die Hälfte der 1.581 befragten CEOs mit einem Rückgang des Weltwirtschaftswachstums. Auf lange Sicht zeigen sich die Befragten jedoch optimistischer.‣ weiterlesen

Weit mehr als 200 Aussteller auf werden auf der All About Automation im am 4. und 5. März am Bodensee erwartet. Bei der aktuellen Auflage sind die Themen Robotik und MRK zunehmend stark vertreten.‣ weiterlesen

Trendthemen wie künstliche Intelligenz oder Nachhaltigkeit haben Auswirkungen auf die gesamte Supply Chain. Auf der diesjährigen Logimat, die vom 10. bis zum 12. März in Stuttgart stattfindet, zeigen mehr als 1.650 Aussteller, wo die Reise in der Intralogistik in den nächsten Jahren hingehen könnte.‣ weiterlesen

Anzeige
Anzeige
Anzeige