Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Reinforced Learning in der Fertigungsplanung

Ablösung für die Heuristik

Ein wesentliches Ziel der Fertigungsplanung ist die optimale Auslastung der Produktion. Mit Algorithmen zum Reinforcement Learning lassen sich hervorragende Planungsergebnisse erzielen.

 (Bild: ©ipopba/stock.adobe.com)

(Bild: ©ipopba/stock.adobe.com)

Muss ein Fertigungsplaner 500 Arbeitsgänge einplanen, stehen ihm 101000 mögliche Reihenfolgen für die Arbeitsgänge zur Verfügung. Das sind mehr, als es Atome im Universum gibt. Weitere Faktoren, welche die Produktion beeinflussen, sind beispielsweise Werkzeuge, Material und Personal. Diese Restriktionen müssen für eine optimale Auslastung ebenfalls berücksichtigt werden.

Heutige Fertigungsplanung

Bereits heute bieten Manufacturing-Execution-Systeme (MES) Funktionen zur automatischen Planung von Fertigungsaufträgen an. Auf Basis von Heuristiken kann eine automatische Zuweisung von Aufträgen und deren Arbeitsgängen auf die Arbeitsplätze und Maschinen erfolgen. Heuristiken haben das Ziel, mit begrenztem Wissen und wenig Zeit ein praktikables Ergebnis zu erzielen. Aufgrund der in der Vergangenheit verfügbaren Rechnerleistungen war die heuristische Planung lange Zeit die beste mathematische Herangehensweise, die für die automatische Planung einsetzbar war. Die Heuristik setzt dabei im Wesentlichen auf eine Schritt-für-Schritt-Planung. Demnach wird ein Arbeitsgang nach dem anderen bestmöglich gemäß feststehender Vorgaben eingeplant. Hierbei wird nur bedingt berücksichtigt, welche Arbeitsgänge noch einzuplanen sind und wie sich die Planungsaktion des aktuellen Arbeitsgangs auf zukünftige Arbeitsgänge auswirkt. Auch werden bereits getroffene Planungsentscheidungen nur unter bestimmten Bedingungen hinterfragt oder rückgängig gemacht. Das resultierende Planungsergebnis kennzeichnet sich oftmals durch hohe Rüstaufwände, lange Durchlaufzeiten und daraus resultierend Terminverzüge.

Fertigungsplanung mit KI

In der heutigen Zeit sind jedoch deutlich leistungsfähigere Rechner verfügbar als früher, mit denen signifikant größere Datenmengen verarbeitet und immer bessere Algorithmen entwickelt werden können. Mit der Weiterentwicklung der Technik kann nun ein entscheidender Schritt in Richtung optimale Fertigungsplanung gemacht werden. Durch die Integration von KI ins MES kann eine Automatisierung von intelligentem Verhalten umgesetzt werden. Reinforcement Learning ermöglicht eine intelligente und ganzheitliche Planung der Fertigung. Im Gegensatz zum schrittweisen Vorgehen der Heuristik, werden nun zahlreiche Entscheidungsmöglichkeiten geprüft, bevor eine endgültige Planungsentscheidung getroffen wird. Reinforcement Learning, was als verstärkendes Lernen übersetzt werden kann, bewertet die getroffenen Entscheidungen, hinterfragt diese und lernt daraus. Der Algorithmus lernt somit mit jeder Entscheidung Neues über die vorhandenen Daten und kann bei jeder durchzuführenden Planungsentscheidung bessere Entscheidungen treffen. Hierbei werden nicht alle Planungsentscheidungsmöglichkeiten geprüft, sondern aktiv nur diejenigen, die gute Ergebnisse liefern werden. Daraus resultiert eine weitsichtige Entscheidungsfindung unter Berücksichtigung von noch durchzuführenden Planungsaktionen.


Das könnte Sie auch interessieren:

Im Werkzeugmanagement eröffnet das Kennzeichnen von Assets mit Data Matrix Codes die Möglichkeit, Werkzeuge zu tracken und mit ihren Lebenslaufdaten zu verheiraten.‣ weiterlesen

Google Cloud gab kürzlich die Einführung der beiden Lösungen Manufacturing Data Engine und Manufacturing Connect bekannt. Mit den Tools lassen sich Assets einer Fertigungsumgebung vernetzen, Daten verarbeiten und standardisieren.‣ weiterlesen

Virtuelle multicloudfähige Plattformen können in Fertigungsbetrieben das Fundament bilden, um IT-Infrastruktur und Betriebsabläufe zu modernisieren und effizient zu betreiben. Denn das nahtlose Zusammenspiel von Cloud-Anwendungen, Softwarebereitstellung sowie Remote Work lassen sich mit digitalen Plattformen vergleichsweise einfach und global orchestrieren.‣ weiterlesen

Wibu-Systems ist Anwendungspartner im Projekt KoMiK. Im Mai wurde das Projekt abgeschlossen und der Karlsruher Lizensierungsspezialist hat zusammen mit den Projektpartnern aus Wirtschaft und Wissenschaft Empfehlungen zur Auswahl eines digitalen Kooperationssystems erarbeitet, inklusive eines Screening-Tools.‣ weiterlesen

MES-Lösungen verfügen über unterschiedliche Erweiterungsmodule, etwa für das Qualitätsmanagement. Der Ausbau der Basisfunktionen sorgt jedoch oft für Aufwand. Eine Alternative versprechen Cloudlösungen.‣ weiterlesen

Bei ihrer digitalen Transformation adaptieren Fertigungsunternehmen Technologien wie künstliche Intelligenz, Machine Learning und digitale Zwillinge. Cloud Computung hilft, dafür erforderliche Kapazitäten skaliert bereitzustellen.‣ weiterlesen

Mit mehreren neuen Partnern erweitert der Softwareanbieter ZetVisions sein Partnerangebot. Unter anderem sollen Pikon und People Consolidated das Beratungsangebot des Heidelberger Unternehmens ergänzen.‣ weiterlesen

Viele Deep-Learning- und Machine-Vision-Anwendungen stellen hohe Ansprüche an die eingesetzten Industrie-Rechner. Für den Einsatz in diesem Umfeld hat Hardware-Spezialist Spectra die PowerBox 4000AC C621A ins Programm genommen.‣ weiterlesen

Mit Hybrid Cloud-Lösungen wollen Firmen die Vorteile des privaten und öffentlichen Cloud-Betriebs erschließen. Managed Cloud Service Provider sind darin geschult, Fallstricke bei der Cloud-Nutzung solcher Infrastrukturen zu bewältigen.‣ weiterlesen

Per Low-Code-Tool können Anwender Prozesskonfigurationen selbst umsetzen. Im MES-Bereich ist dieser Ansatz noch selten zu finden, doch einige Lösungen gibt es bereits.‣ weiterlesen

Anzeige
Anzeige
Anzeige