Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Schlüsseltechnologie für das Industrial Internet of Things

Warum Edge Computing wichtig ist

Mit stärkerer Vernetzung steigt die Menge übertragener Sensordaten und damit die Anforderungen an IIoT-angebundene Geräte, Maschinen und Anlagen. Dabei gewinnt die Echtzeitverarbeitung dieser Daten an Bedeutung, obwohl das gerade bei großen Datenmengen weitere Herausforderungen stellt. Mit Edge Computing stellen Industrieunternehmen sicher, dass erfasste Daten entlang der Wertschöpfungskette keine Prozesse blockieren.

Bild: Schubert System Elektronik GmbH

Bild: Schubert System Elektronik GmbH

Als Edge (zu Deutsch Kante) bezeichnet man den Rand eines technischen Informationsnetzwerks, an dem virtuelle und reale Welt aufeinander treffen. In einer dezentralen IT-Architektur werden anfallende Daten nicht im Rechenzentrum, sondern direkt an diesem Übergang verarbeitet und bei Bedarf in die Cloud verschoben. Edge Computing ermöglicht an dieser Stelle die Datenvorverarbeitung in Echtzeit: Gesammelte Daten werden lokal nach definierten Kriterien verdichtet. Erste Analyseergebnisse können nun direkt an die Endgeräte rückgekoppelt oder weiterverarbeitet werden. Anschließend besteht die Möglichkeit, nur relevante und damit kleinere Datenpakete in die Cloud zu transferieren, die nicht für sich allein nutzbar sind. Durch die Reduzierung der Datenmenge werden stationäre Server entlastet, aber auch die laufenden Kosten für die Datenübertragung und die Cloud reduziert. Diese dezentrale Verarbeitung schont nicht nur Ressourcen, sondern reduziert auch das Risiko des Datenverlustes außerhalb der Anlage beziehungsweise bei Cyber-Attacken auf die Cloud. Mittels Edge Computing können Latenzzeiten verkürzt, Datenströme optimiert und Produktionsflüsse sowie Prozesse verbessert werden.

Schlüsseltechnologie für die Industrie 4.0

Im Industrie 4.0-Reifegradmodell der Acatech ist die Vorverarbeitung von Daten auf der 3. Stufe zu verorten: Sensoren erfassen eine Vielzahl an Datenpunkten und bilden damit Prozesse von Anfang bis Ende ab. Im nächsten Schritt werden die Daten sichtbar, die in der Vorverarbeitung nach ersten Relevanzkriterien analysiert werden. Die Erkenntnisse aus dieser Datenauswertung werden auf der 4. und 5. Stufe des Modells automatisiert in die Prozesse gespiegelt und finden dort Anwendung, um Wirkungszusammenhänge ableiten und die Prognosefähigkeit verstärken zu können (beispielsweise für Predictive Maintenance). Mobile Arbeitsmaschinen (Automated Guided Vehicles, Automated Guided Cars) beispielsweise nutzen das Edge Computing zur lokalen Datenanalyse und schicken nur Änderungsdaten in Echtzeit in die Cloud. Von dort erhalten sie weitere Aufgaben oder das Update für ihre Navigationsdaten.

Gateways zur Datenverwaltung nah an der Maschine

Bei der Integration eines IIoT müssen OT (Operational Technology) und IT (Informational Technology) zunehmend stärker miteinander verbunden werden. Hier kommt das Edge Gateway zum Einsatz. Die Ebenen Steuerung und Datenverarbeitung sowie die Schnittstelle zur Cloudebene können auf einem Gerät vereint werden. Diese Edge Gateways bündeln fünf wichtige Funktionalitäten: Daten, die aus der Maschine extrahiert werden, die Steuerung/HMI und die Datenvorverarbeitung beschreiben das eigentliche Edge Computing. Das Gateway übernimmt zusätzlich die Cloud-Anbindung und den Remote-Zugriff bis auf die Sensorebene. Die Komprimierung auf ein Gerät bedeutet Kostenersparnis, weniger Maintenance- und Ressourcen-Aufwand und mehr Platz im Schaltschrank. Die Anwender haben statt mehrerer nur einen Ansprechpartner für Steuerung, Cyber Security sowie die Datenverarbeitung. Letztere ist durch die Edge-Computing-Lösung unabhängig von der eigentlichen Prozessaufgabe der Maschine. Damit läuft die Maschine weiter, wenn die Cloud beziehungsweise Internetanbindung einmal ausfallen sollte. Die benötigten Daten werden in diesem Fall lokal zwischengespeichert und gesichert, bis sie wieder in die Cloud transferiert werden können. Durch die Vorverarbeitung bleiben Rohdaten außerdem bei der ursprünglichen Quelle. Unternehmenskritische oder sensible Daten sind leichter zu schützen, das Risiko des Datenmissbrauchs wird reduziert. Die prozessnahe Datenanalyse vereinfacht außerdem die vorausschauende Wartung und Qualitätssicherung. Dies verspricht neben der Erfüllung der Echtzeitanforderungen einen unmittelbaren, positiven Effekt auf die Produktivität.


Das könnte Sie auch interessieren:

Das Institut für Schweißtechnik und Fügetechnik (ISF) der RWTH Aachen University untersucht im Sonderforschungsbereich 1120 'Präzision aus Schmelze' Einflüsse verschiedener Legierungselemente auf die Eigenspannungsverteilung. Um die Dehnung von Bauteilen zu untersuchen, wird sie mit in situ-Bildkorrelation beobachtet. Das Setup ist anspruchsvoll.‣ weiterlesen

Boston Micro Fabrication hat den 3D-Drucker MicroArch S240 vorgestellt: Bei einem Bauvolumen von 100x100x75mm ist er auf die Serienproduktion von Mikrobauteilen in Endqualität ausgelegt.‣ weiterlesen

Das Vertragsmanagement findet oft noch in Papierform statt. Dabei ermöglichen Lösungen für das Contract Lifecycle Management (CLM) längst eine digitale Abwicklung entlang der gesamten Wertschöpfungskette.‣ weiterlesen

Bordnetzhersteller können ihre spezifischen Anforderungen an Manufacturing-Execution-Systeme mit Branchenlösungen abbilden. Bei der Integration spart das viel Customizing und im Betrieb können Nutzer erwarten, dass Branchentrends besonders schnell im Standard landen.‣ weiterlesen

In einem offenen Brief haben sich IT-Forscher verschiedener Institutionen und Unternehmen an die Politik gewandt und fordern, Lösegeldzahlungen nach Ransomware-Angriffen zu unterbinden.‣ weiterlesen

Der Security-Spezialist Trend Micro gründet mit VicOne eine Tochtergesellschaft, die sich auf die Absicherung von Elektrofahrzeugen und vernetzten Fahrzeugen konzentrieren soll.‣ weiterlesen

Operationales Reporting hilft Firmen, Entscheidungen mit Echtzeitdatenanalysen zu beschleunigen und abzusichern. Angesichts der aktuellen Krisen gewinnt der Ansatz an Bedeutung. Die SAP-Software für diese Aufgabe heißt Embedded Analytics. Was kann dieses Tool und wie unterscheidet es sich von SAP BW?‣ weiterlesen

Mit der Übernahme von Empolis will ProAlpha sein ERP-Portfolio erweitern. Das Unternehmen aus Kaiserslautern bietet cloudbasierte und KI-gestützte Lösungen für die Analyse und Verarbeitung von Geschäftsprozess-relevanten Informationen an.‣ weiterlesen

Kleine und mittlere Unternehmen haben bei der Umsetzung von Big-Data-Projekten mit Problemen zu kämpfen. So geben in einer Studie des Cloud-Anbieters Ionos 55 Prozent der Befragten an, dass Daten nicht in ausreichender Form vorliegen.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige