Anzeige
Anzeige
Beitrag drucken

Schlüsseltechnologie für das Industrial Internet of Things

Warum Edge Computing wichtig ist

Mit stärkerer Vernetzung steigt die Menge übertragener Sensordaten und damit die Anforderungen an IIoT-angebundene Geräte, Maschinen und Anlagen. Dabei gewinnt die Echtzeitverarbeitung dieser Daten an Bedeutung, obwohl das gerade bei großen Datenmengen weitere Herausforderungen stellt. Mit Edge Computing stellen Industrieunternehmen sicher, dass erfasste Daten entlang der Wertschöpfungskette keine Prozesse blockieren.

Bild: Schubert System Elektronik GmbH

Bild: Schubert System Elektronik GmbH

Als Edge (zu Deutsch Kante) bezeichnet man den Rand eines technischen Informationsnetzwerks, an dem virtuelle und reale Welt aufeinander treffen. In einer dezentralen IT-Architektur werden anfallende Daten nicht im Rechenzentrum, sondern direkt an diesem Übergang verarbeitet und bei Bedarf in die Cloud verschoben. Edge Computing ermöglicht an dieser Stelle die Datenvorverarbeitung in Echtzeit: Gesammelte Daten werden lokal nach definierten Kriterien verdichtet. Erste Analyseergebnisse können nun direkt an die Endgeräte rückgekoppelt oder weiterverarbeitet werden. Anschließend besteht die Möglichkeit, nur relevante und damit kleinere Datenpakete in die Cloud zu transferieren, die nicht für sich allein nutzbar sind. Durch die Reduzierung der Datenmenge werden stationäre Server entlastet, aber auch die laufenden Kosten für die Datenübertragung und die Cloud reduziert. Diese dezentrale Verarbeitung schont nicht nur Ressourcen, sondern reduziert auch das Risiko des Datenverlustes außerhalb der Anlage beziehungsweise bei Cyber-Attacken auf die Cloud. Mittels Edge Computing können Latenzzeiten verkürzt, Datenströme optimiert und Produktionsflüsse sowie Prozesse verbessert werden.

Schlüsseltechnologie für die Industrie 4.0

Im Industrie 4.0-Reifegradmodell der Acatech ist die Vorverarbeitung von Daten auf der 3. Stufe zu verorten: Sensoren erfassen eine Vielzahl an Datenpunkten und bilden damit Prozesse von Anfang bis Ende ab. Im nächsten Schritt werden die Daten sichtbar, die in der Vorverarbeitung nach ersten Relevanzkriterien analysiert werden. Die Erkenntnisse aus dieser Datenauswertung werden auf der 4. und 5. Stufe des Modells automatisiert in die Prozesse gespiegelt und finden dort Anwendung, um Wirkungszusammenhänge ableiten und die Prognosefähigkeit verstärken zu können (beispielsweise für Predictive Maintenance). Mobile Arbeitsmaschinen (Automated Guided Vehicles, Automated Guided Cars) beispielsweise nutzen das Edge Computing zur lokalen Datenanalyse und schicken nur Änderungsdaten in Echtzeit in die Cloud. Von dort erhalten sie weitere Aufgaben oder das Update für ihre Navigationsdaten.

Gateways zur Datenverwaltung nah an der Maschine

Bei der Integration eines IIoT müssen OT (Operational Technology) und IT (Informational Technology) zunehmend stärker miteinander verbunden werden. Hier kommt das Edge Gateway zum Einsatz. Die Ebenen Steuerung und Datenverarbeitung sowie die Schnittstelle zur Cloudebene können auf einem Gerät vereint werden. Diese Edge Gateways bündeln fünf wichtige Funktionalitäten: Daten, die aus der Maschine extrahiert werden, die Steuerung/HMI und die Datenvorverarbeitung beschreiben das eigentliche Edge Computing. Das Gateway übernimmt zusätzlich die Cloud-Anbindung und den Remote-Zugriff bis auf die Sensorebene. Die Komprimierung auf ein Gerät bedeutet Kostenersparnis, weniger Maintenance- und Ressourcen-Aufwand und mehr Platz im Schaltschrank. Die Anwender haben statt mehrerer nur einen Ansprechpartner für Steuerung, Cyber Security sowie die Datenverarbeitung. Letztere ist durch die Edge-Computing-Lösung unabhängig von der eigentlichen Prozessaufgabe der Maschine. Damit läuft die Maschine weiter, wenn die Cloud beziehungsweise Internetanbindung einmal ausfallen sollte. Die benötigten Daten werden in diesem Fall lokal zwischengespeichert und gesichert, bis sie wieder in die Cloud transferiert werden können. Durch die Vorverarbeitung bleiben Rohdaten außerdem bei der ursprünglichen Quelle. Unternehmenskritische oder sensible Daten sind leichter zu schützen, das Risiko des Datenmissbrauchs wird reduziert. Die prozessnahe Datenanalyse vereinfacht außerdem die vorausschauende Wartung und Qualitätssicherung. Dies verspricht neben der Erfüllung der Echtzeitanforderungen einen unmittelbaren, positiven Effekt auf die Produktivität.


Das könnte Sie auch interessieren:

Ab und zu fehlte ein Schlüssel im Kloster der Franziskanerinnen der ewigen Anbetung von Schwäbisch Gmünd. Beim letzten Mal gab das den Impuls, anstatt neue mechanische Zylinder in die rund 220 Türen des Komplexes einzubauen, die alte Technik durch das Bluesmart-System von Winkhaus zu ersetzen.‣ weiterlesen

Mit 100,5 Punkten hält sich das IAB-Arbeitsmarktbarometer im November stabil und liegt weiter im leicht über der neutralen Marke. Auf europäischer Ebene sank der Frühindikator allerdings erneut.‣ weiterlesen

In einer neuen Expertise des Forschungsbeirats Industrie 4.0 untersuchen das FIR an der RWTH Aachen und das Industrie 4.0 Maturity Center den Status-quo und die aktuellen Herausforderungen der deutschen Industrie bei der Nutzung und wirtschaftlichen Verwertung von industriellen Daten und geben Handlungsempfehlungen für Unternehmen, Verbände, Politik und Wissenschaft.‣ weiterlesen

Im Forschungsprojekt FabOS soll eine KI-Bin-Picking-Anwendung entstehen, die ein verbessertes Erkennen, Greifen und definiertes Ablegen von Blechteilen in der Produktion ermöglicht.‣ weiterlesen

Die Digitalisierung des Qualitätsmanagements stellt Unternehmen vor Herausforderungen. Daher haben das Fraunhofer IPT und die FH Südwestfalen im Forschungsvorhaben 'Qbility - Quality 4.0 Capability Determination Model' ein datengetriebenes Reifegradmodell entwickelt, das die Anforderungen eines digitalisierten Qualitätsmanagements bei KMU adressiert.‣ weiterlesen

Das Bundesamt für Sicherheit in der Informationstechnik (BSI) empfiehlt sicherheitsrelevante Patches und Updates so schnell wie möglich, unter Abwägung des jeweiligen Risikos, einzuspielen, auch wenn im professionellen und insbesondere industriellen Umfeld automatisierte Software-Updates mit unerwünschten Einschränkungen der Funktionalität - etwa durch einen Neustart des Systems - verbunden sein können.‣ weiterlesen

Im Gegensatz zu anderen Cyberangriffen bieten Attacken mit Ransomware auf den ersten Blick einen einfachen Ausweg: die Zahlung des geforderten Lösegelds.‣ weiterlesen

Nach 84,5 Punkten im Oktober kletterte der Ifo-Geschäftsklimaindex im November auf 86,3 Punkte. Die Unternehmen blicken demnach weniger pessimistisch auf die nächsten Monate.‣ weiterlesen

In Kombination mit einer Augmented-Reality-Brille bietet eine neue Software des Fraunhofer IGD digitale Unterstützung von Absortiervorgängen. Zusammengehörige Bauteile werden direkt im Sichtfeld der Beschäftigten an der Produktionslinie farblich überlagert. Anwender im Automotive-Bereich können so etwa durch beschleunigte Prozesse und eine minimierte Fehleranfälligkeit Kosten reduzieren.‣ weiterlesen

Edge Management, Digital Twin und Data Spaces bilden die Schwerpunkte einer Zusammenarbeit zwischen der Open Industry 4.0 Alliance und dem Labs Network Industrie 4.0.‣ weiterlesen