Anzeige
Anzeige
Anzeige
Beitrag drucken

Artificial Intelligence of Things

Edge-Hardware für jede Phase des KI-Projekts

Immer häufiger sollen KI-Anwendungen Entscheidungen ‚on Edge‘ treffen. Die KI-Modelle dafür werden zwar noch in der Cloud trainiert, Datenerfassung und Interferenz sind aber problemlos vor Ort möglich. Dabei stellt jede Phase der KI-Implementierung andere Anforderungen an die Edge-Hardware.

Autonome Transportsysteme im Tagebau (Bild: Moxa Europe GmbH)

Autonome Transportsysteme im Tagebau (Bild: Moxa Europe GmbH)

Die Sensoren und Geräte etwa einer großen Ölraffinerie produzieren rund ein Terabyte Rohdaten pro Tag. Eine sofortige Rücksendung all dieser Rohdaten zur Speicherung oder Verarbeitung an eine öffentliche Cloud oder einen privaten Server würde beträchtliche Ressourcen an Bandbreite, Verfügbarkeit und Stromverbrauch erfordern. Gerade in hochgradig verteilten Anlagen ist es gar unmöglich, solche Datenmengen an einen zentralen Server zu senden, bereits wegen der Latenzzeiten bei der Datenübertragung und -analyse. Um diese Latenzzeiten zu verkürzen, die Kosten für die Datenkommunikation und -speicherung zu senken und die Netzwerkverfügbarkeit zu erhöhen, werden bei IIoT-Anwendungen zunehmend KI- und Machine-Learning-Fähigkeiten auf die Edge-Ebene des Netzwerks verlagert, was eine größere Vorverarbeitungsleistung direkt vor Ort erlaubt. Die Fortschritte bei der Verarbeitungsleistung von Edge-Computern machen das möglich.

Der passende Edge-Computer

Um eine KI in die IIoT-Anwendungen zu integrieren, muss das Training der Modelle weiterhin in der Cloud stattfinden. Doch letztlich müssen die trainierten Interferenz-Modelle im Feld eingesetzt werden. Mit Edge-Computing kann das Interferenz über die KI im Wesentlichen vor Ort durchgeführt werden, anstatt Rohdaten zur Verarbeitung und Analyse an die Cloud zu senden. Dafür muss eine zuverlässige Hardwareplattform auf Edge-Niveau bereit stehen, bei deren Auswahl folgende Faktoren eine wichtige Rolle spielen: die Verarbeitungsanforderungen für verschiedene Phasen der KI-Implementierung, die Edge-Computing-Ebenen, Entwicklungstools und die Umgebungsbedingungen.

Phasen der Implementierung

Da jede der drei nachfolgenden Phasen des Aufbaus einer KI-Edge-Computing-Anwendung unterschiedliche Algorithmen zur Ausführung verschiedener Aufgaben verwendet, gelten in jeder Phase eigene Verarbeitungsanforderungen.

Datenerfassung – Ziel dieser Phase ist es, große Mengen an Informationen zu sammeln, um das KI-Modell zu trainieren. Unverarbeitete Rohdaten allein sind jedoch nicht hilfreich, da die Informationen Dubletten, Fehler und Ausreißer enthalten könnten. Die Vorverarbeitung der erfassten Daten in der Anfangsphase zur Identifizierung von Mustern, Ausreißern und fehlenden Informationen ermöglicht außerdem das Korrigieren von Fehlern und systematischen Verzerrungen. Je nach Komplexität der erfassten Daten basieren die bei der Datenerfassung typischerweise verwendeten Computerplattformen meist auf Prozessoren der Serien Arm Cortex oder Intel Atom/Core. Im Allgemeinen sind die E/A- und CPU-Spezifikationen (und nicht die der GPU) wichtiger für die Durchführung von Datenerfassungsaufgaben.

Training – KI-Modelle müssen auf modernen neuronalen Netzen und ressourcenintensiven Machine-Learning- oder Deep-Learning-Algorithmen trainiert werden, die leistungsfähigere Verarbeitungsfunktionen etwa von GPUs erfordern. Deren Fähigkeiten bei der Parallelverarbeitung helfen, große Mengen von erfassten und vorverarbeiteten Trainingsdaten zu analysieren. Das Training eines KI-Modells beinhaltet die Auswahl eines Machine-Learning-Modells und dessen Training anhand der erfassten und vorverarbeiteten Daten. Während dieses Prozesses müssen auch die Parameter bewertet und entsprechend angepasst werden. Es stehen zahlreiche Trainingsmodelle und Tools zur Auswahl, darunter auch Deep-Learning-Entwicklungs-Frameworks nach Industriestandards wie PyTorch, TensorFlow und Caffe. Das Training wird üblicherweise auf dafür vorgesehenen KI-Trainingsmaschinen oder Cloud-Computing-Diensten wie den AWS Deep Learning AMIs, Amazon SageMaker Autopilot, Google Cloud AI oder Azure Machine Learning durchgeführt.

Interferenz – In der letzten Phase wird das trainierte KI-Modell auf dem Edge-Computer implementiert, damit es Schlussfolgerungen und Vorhersagen auf der Grundlage neu erfasster und vorverarbeiteter Daten treffen kann. Da die Inferencing-Phase im Allgemeinen weniger Datenverarbeitungsressourcen verbraucht als das Training, kann eine CPU oder ein leichter Beschleuniger für die betreffende AIoT-Anwendung reichen. Dennoch wird ein Konvertierungstool benötigt, um das trainierte Modell so umzuwandeln, dass es auf speziellen Edge-Prozessoren/Beschleunigern ausgeführt werden kann, etwa Intel OpenVino oder Nvidia Cuda. Interferenz umfasst auch mehrere verschiedene Edge-Computing-Ebenen und -Anforderungen, auf die im folgenden Abschnitt eingegangen wird.


Das könnte Sie auch interessieren:

Durch Angriffe auf IT-Systeme entstehen in Deutschland jährlich Schäden in zweistelliger Milliardenhöhe. Expertise zu Vorfallbehandlung können Unternehmen ab Oktober über das Cyber-Sicherheitsnetzwerk erhalten.‣ weiterlesen

Beim Digitalisierungsspezialisten GFOS hat die nächste Generation übernommen. Gunda Cassens-Röhrig übernimmt den Vorsitz der Geschäftsführung. Stellvertreterin wird Katharina Röhrig.‣ weiterlesen

Mit der Akquise von Customerville will IFS Anwender unter anderem dabei unterstützen, ihre Kundenbindung zu stärken.‣ weiterlesen

Erst mit regelmäßigem Überwachen und Kalibrieren liefern Prüfmittel vertrauenswürdige Ergebnisse. Diese Überwachung behandelt die Richtlinienreihe VDI/VDE/DGQ 2618 für Prüfmittel bei dimensionellen Messgrößen. ‣ weiterlesen

Engelbert Strauss ist gemeinsam mit seinem Partner TGW Logistics Group beim Deutschen Logistikpreis 2020 der Bundesvereinigung Logistik (BVL) als Finalist und Vizeplatzierter ausgezeichnet worden. Geehrt wurden beide Unternehmen für das Projekt 'CI Factory - Vernetzung und Digitalisierung in Logistik und Produktion'.‣ weiterlesen

Siemens hat die AI-Anomaly-Assistant-Industrie-App ins Portfolio genommen. Damit können Anwender per künstlicher Intelligenz Anomalien in der Prozessindustrie erkennen und diese auf ihre Geschäftsrelevanz bewerten.‣ weiterlesen

Bereits im April 2016 herausgegeben und 2021 erneut bestätigt: Die Richtlinie VDI/VDE 3516 Blatt 4 'Validierung im GxP-Umfeld – Automatisiertes Testen' stellt die Zielsetzungen und möglichen Vorteile automatisierter Tests im pharmazeutischen Umfeld dar.‣ weiterlesen

Immer mehr Fertigungsunternehmen streben im Konstruktionsbereich eine übergreifende Prozessintegration an. In diesem Szenario kann das ERP-System AMS.ERP eine zentrale Rolle ausfüllen, das alle relevanten Daten aufnimmt. Markus Rieche, Presales Consultant bei AMS.Solution, spricht über den Entwicklungsstand und das Potenzial des Ansatzes gerade für Einzel- und Variantenfertiger.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige