Immer häufiger sollen KI-Anwendungen Entscheidungen ‚on Edge‘ treffen. Die KI-Modelle dafür werden zwar noch in der Cloud trainiert, Datenerfassung und Interferenz sind aber problemlos vor Ort möglich. Dabei stellt jede Phase der KI-Implementierung andere Anforderungen an die Edge-Hardware.
Autonome Transportsysteme im Tagebau (Bild: Moxa Europe GmbH)
Die Sensoren und Geräte etwa einer großen Ölraffinerie produzieren rund ein Terabyte Rohdaten pro Tag. Eine sofortige Rücksendung all dieser Rohdaten zur Speicherung oder Verarbeitung an eine öffentliche Cloud oder einen privaten Server würde beträchtliche Ressourcen an Bandbreite, Verfügbarkeit und Stromverbrauch erfordern. Gerade in hochgradig verteilten Anlagen ist es gar unmöglich, solche Datenmengen an einen zentralen Server zu senden, bereits wegen der Latenzzeiten bei der Datenübertragung und -analyse. Um diese Latenzzeiten zu verkürzen, die Kosten für die Datenkommunikation und -speicherung zu senken und die Netzwerkverfügbarkeit zu erhöhen, werden bei IIoT-Anwendungen zunehmend KI- und Machine-Learning-Fähigkeiten auf die Edge-Ebene des Netzwerks verlagert, was eine größere Vorverarbeitungsleistung direkt vor Ort erlaubt. Die Fortschritte bei der Verarbeitungsleistung von Edge-Computern machen das möglich.
Der passende Edge-Computer
Um eine KI in die IIoT-Anwendungen zu integrieren, muss das Training der Modelle weiterhin in der Cloud stattfinden. Doch letztlich müssen die trainierten Interferenz-Modelle im Feld eingesetzt werden. Mit Edge-Computing kann das Interferenz über die KI im Wesentlichen vor Ort durchgeführt werden, anstatt Rohdaten zur Verarbeitung und Analyse an die Cloud zu senden. Dafür muss eine zuverlässige Hardwareplattform auf Edge-Niveau bereit stehen, bei deren Auswahl folgende Faktoren eine wichtige Rolle spielen: die Verarbeitungsanforderungen für verschiedene Phasen der KI-Implementierung, die Edge-Computing-Ebenen, Entwicklungstools und die Umgebungsbedingungen.
Phasen der Implementierung
Da jede der drei nachfolgenden Phasen des Aufbaus einer KI-Edge-Computing-Anwendung unterschiedliche Algorithmen zur Ausführung verschiedener Aufgaben verwendet, gelten in jeder Phase eigene Verarbeitungsanforderungen.
Datenerfassung – Ziel dieser Phase ist es, große Mengen an Informationen zu sammeln, um das KI-Modell zu trainieren. Unverarbeitete Rohdaten allein sind jedoch nicht hilfreich, da die Informationen Dubletten, Fehler und Ausreißer enthalten könnten. Die Vorverarbeitung der erfassten Daten in der Anfangsphase zur Identifizierung von Mustern, Ausreißern und fehlenden Informationen ermöglicht außerdem das Korrigieren von Fehlern und systematischen Verzerrungen. Je nach Komplexität der erfassten Daten basieren die bei der Datenerfassung typischerweise verwendeten Computerplattformen meist auf Prozessoren der Serien Arm Cortex oder Intel Atom/Core. Im Allgemeinen sind die E/A- und CPU-Spezifikationen (und nicht die der GPU) wichtiger für die Durchführung von Datenerfassungsaufgaben.
Training – KI-Modelle müssen auf modernen neuronalen Netzen und ressourcenintensiven Machine-Learning- oder Deep-Learning-Algorithmen trainiert werden, die leistungsfähigere Verarbeitungsfunktionen etwa von GPUs erfordern. Deren Fähigkeiten bei der Parallelverarbeitung helfen, große Mengen von erfassten und vorverarbeiteten Trainingsdaten zu analysieren. Das Training eines KI-Modells beinhaltet die Auswahl eines Machine-Learning-Modells und dessen Training anhand der erfassten und vorverarbeiteten Daten. Während dieses Prozesses müssen auch die Parameter bewertet und entsprechend angepasst werden. Es stehen zahlreiche Trainingsmodelle und Tools zur Auswahl, darunter auch Deep-Learning-Entwicklungs-Frameworks nach Industriestandards wie PyTorch, TensorFlow und Caffe. Das Training wird üblicherweise auf dafür vorgesehenen KI-Trainingsmaschinen oder Cloud-Computing-Diensten wie den AWS Deep Learning AMIs, Amazon SageMaker Autopilot, Google Cloud AI oder Azure Machine Learning durchgeführt.
Interferenz – In der letzten Phase wird das trainierte KI-Modell auf dem Edge-Computer implementiert, damit es Schlussfolgerungen und Vorhersagen auf der Grundlage neu erfasster und vorverarbeiteter Daten treffen kann. Da die Inferencing-Phase im Allgemeinen weniger Datenverarbeitungsressourcen verbraucht als das Training, kann eine CPU oder ein leichter Beschleuniger für die betreffende AIoT-Anwendung reichen. Dennoch wird ein Konvertierungstool benötigt, um das trainierte Modell so umzuwandeln, dass es auf speziellen Edge-Prozessoren/Beschleunigern ausgeführt werden kann, etwa Intel OpenVino oder Nvidia Cuda. Interferenz umfasst auch mehrere verschiedene Edge-Computing-Ebenen und -Anforderungen, auf die im folgenden Abschnitt eingegangen wird.
Mittelständische Unternehmen investieren selbst in schwierigen Zeiten in Microsoft-Technologien, weil sie überzeugt sind, dass ihre Mitarbeiterproduktivität steigt und sich ihre Kostenstruktur bessert. Microsoft hat mit dem Microsoft-Partner-Network ein Netzwerk aufgebaut, das ein Forum für den Aufbau von Partnerschaften, Zugang zu Ressourcen und einen Rahmen für Dialoge und Kooperationen bietet. Für unsere Leser gibt die Microsoft-Partnerübersicht in Ausgabe Juli/August der IT&Production Tipps für die Suche nach einer geeigneten Branchen- oder Speziallösung im Bereich des produzierenden Gewerbes.
Auf der Suche nach Innovation, nach neuen Lösungen und der Abgrenzung zum Mitbewerb vernetzen sich zunehmend mehr Unternehmen mit externen Experten und Partnern. SAP hat mit dem SAP-Ecosystem ein Netzwerk aufgebaut, das ein Forum für den Aufbau von Partnerschaften, Zugang zu Ressourcen und einen Rahmen für Dialoge und Kooperationen bietet. In der Maiausgabe der Fachzeitschrift IT&Production erhalten unsere Leser einen aktuellen Überblick zum SAP-Ecosystem im Bereich des produzierenden Gewerbes.
Das Internet of Things verändert Produktwelten und die Vernetzung in der Fertigung gleichermaßen. Entstehende Ökosysteme laden zur einer neuen Form der Zusammenarbeit ein. Die Spezialausgabe IoT Wissen Kompakt informiert über die Technologie, Projektierung und Anbieter für die eigene Applikation, in- und außerhalb der Fabrik.
Um alle Potenziale eines MES umfassend ausnutzen zu können, beleuchten unsere Autoren in der Serie von MES Wissen Kompakt die erfolgskritischen Faktoren, um Fertigungsunternehmen präventiv zu steuern. Darüber hinaus präsentiert MES Wissen Kompakt ein breites Spektrum an Firmenportraits, Produkt- neuheiten und Dienst- leistungen im MES-Umfeld.
Ein Unternehmen, das sich mit der Auswahl eines ERP- Systems befasst, muss sich gleichsam mit einem viel- schichtigen Software-Markt und unklaren Interessen- lagen an interne Abwick- lungsprozesse auseinander- setzen. Guter Rat bei der Investitionsentscheidung ist teuer. ERP/CRM Wissen Kompakt unterstützt Sie bei der gezielten Investition in die IT-Infrastruktur.
Immer mehr Anbieter von Maschinen, Automatisierungstechnik und Industriesoftware integrieren künstliche Intelligenz in ihre Produkte. Das ganze Potenzial spielen selbstlernende Systeme aber erst aus, wenn sie passgenau auf ihren Einsatz in Fertigung und Büro zugeschnitten wurden. Über beide Möglichkeiten, als Fertiger die Vorzüge von industrieller KI zu nutzen, geht es im regelmäßig aktualisierten Themenheft Künstliche Intelligenz.