Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Erst die Anwendung, dann die Technologie

Wo die werksnahe IT von KI profitiert

Der Einfluss von künstlicher Intelligenz (KI) auf IT-Lösungen in der Fertigung lässt sich kaum leugnen. Von Predictive Quality bis hin zu Automated Data Science ist das Potenzial von KI-Anwendungen bereits jetzt groß – gerade auch in Verbindung mit historischen Daten aus dem Manufacturing Execution System.

Bild: ©Industrial Arts/stock.adobe.com

Bild: ©Industrial Arts/stock.adobe.com

Grundsätzlich hat sich an der Aufgabenstellung an die Fertigungs-IT wenig geändert – sie soll immer noch den Fertigungsbetrieb unterstützen bzw. optimieren. Was sich geändert hat, ist die Komplexität – Losgrößen werden kleiner, die Variantenvielfalt größer. In Folge dessen wächst die Datenflut, mit der sowohl Software als auch Menschen umgehen müssen. Dabei kann künstliche Intelligenz Abhilfe schaffen. Doch welche Anwendungen haben welches Potenzial, wenn man sie mit künstlicher Intelligenz anreichert?

Predictive Quality

Mit Predictive Quality hat der MES-Hersteller MPDV bereits ein konkretes Produktbeispiel umgesetzt: Grundannahme für die Vorhersage der Qualität ist, dass es auch zu Ausschuss oder Nacharbeit kommen kann, wenn sich alle Prozessparameter innerhalb der jeweils gültigen Toleranzen bewegen. Grund dafür sind komplexe Zusammenhänge und Wechselwirkungen, die oft auf die eigentliche Fertigungstechnologie zurückzuführen sind. Predictive Quality berücksichtigt das und gibt Mitarbeitern in der Fertigung die Möglichkeit, sofort zu sehen, ob der aktuell produzierte Artikel Ausschuss oder ein gutes Teil ist – unter Angabe der Eintrittswahrscheinlichkeit. Damit lässt sich etwa die Qualität eines Motorblocks vorhersagen, während dieser gerade noch abkühlt. So kann entschieden werden, ob es sich lohnt, weiter in ein Teil zu investieren oder ob es direkt wieder eingeschmolzen wird. Der Predictive Quality-Ansatz nutzt maschinelles Lernen und verarbeitet erfasste Prozessdaten in Echtzeit.

Rüstzeiten minimieren

Im Rahmen der Fertigungsplanung wird auf eine Reihe von Vorgabewerten zurückgegriffen, um eine Grundlage für die Bearbeitungsdauer eines Vorgangs und die Übergangszeiten zwischen zwei Vorgängen eines Auftrags zu haben. Die Rüstzeit ist eine dieser Vorgaben, die bisher meist manuell mit der Stoppuhr gemäß REFA-Verband ermittelt wird. KI kann diese Rüstzeitvorhersage unterstützen. Dazu wird auf Basis historischer Daten aus einem Manufacturing Execution System (MES) ein Modell erstellt, dass Faktoren – wie etwa die Länge der Rüstzeit bezogen auf die Kombinationen aus Artikel, Maschine, Werkzeug – berücksichtigt. Im Rahmen der Modellerstellung können die verwendeten historischen Daten auch auf ihre Eigenschaft als Einflussfaktor untersucht werden. Eine gängige Rüstwechselmatrix kommt dabei schnell an ihre Grenzen, da es einfach zu viele mögliche Kombinationen gibt. Der eigentliche Clou besteht jedoch in der Verwendung des erzeugten Modells und somit in der Vorhersage der Rüstzeit. Wird beispielsweise ein Arbeitsgang auf einer Maschine zu einem bestimmten Zeitpunkt mit einem bestimmten Werkzeug eingeplant, werden diese und gegebenenfalls weitere Daten verwendet, um auf Basis des zuvor erstellten Modells die wahrscheinliche Rüstzeit vorherzusagen. Auch für neue Kombinationen können Rüstzeiten auf Basis von Ähnlichkeitserwägungen abgeschätzt werden. Die KI agiert dabei im Wesentlichen so, wie die manuelle Pflege erfolgen würde. Was die Rüstzeitvorhersage im Vergleich mit der herkömmlichen Methode leisten kann, wurde auf Basis von mehreren realen Produktionsszenarien untersucht. Dabei zeigt sich, dass die KI-basierte Vorhersage den herkömmlichen Vorgabemechanismen deutlich überlegen ist. Aus Analysen geht hervor, dass durch den Einsatz von KI-Systemen rund 20 Prozent neue Kapazitäten in der Produktion frei werden.


Machine Learning
Nach Wikipedia ist Machine Learning bzw. Maschinelles Lernen “ein Oberbegriff für die ‘künstliche’ Generierung von Wissen aus Erfahrung: Ein künstliches System lernt aus Beispielen und kann diese nach Beendigung der Lernphase verallgemeinern. Dazu bauen Algorithmen beim maschinellen Lernen ein statistisches Modell auf, das auf Trainingsdaten beruht.”


Das könnte Sie auch interessieren:

Die 16. FMB – Zuliefermesse Maschinenbau findet vom 10. bis 12. November 2021 im Messezentrum Bad Salzuflen statt. Zu den Topthemen kürte Veranstalter Easyfairs die Oberflächentechnik und Digitalisierung.‣ weiterlesen

Produktionsunternehmen sollen mit den neuen IoTmaxx-Mobilfunk-Gateways Maschinendaten besonders schnell in die AnyViz-Cloud übertragen können.‣ weiterlesen

Self-Service-Technologie, digitale Assistenten, künstliche Intelligenz - die Digitalwerkzeuge fürs Kundenbeziehungsmanagement werden immer ausgefeilter. Sind CRM- und ERP-System gut integriert, lassen sich im Sinn des xRM-Ansatzes auch leicht die Beziehungen zu Geschäftspartnern IT-gestützt pflegen.‣ weiterlesen

Vor allem KMU befürchten häufig, bei der IT-gestützten Prozessoptimierung im Vergleich zu Großkonzernen nicht mithalten zu können. Die beiden Technologieprojekte IIP Ecosphere und FabOS, die im Rahmen des KI-Innovationswettbewerbs vom BMWi gefördert werden, wollen diesen Firmen den Zugang zu KI-Anwendungen erleichtern.‣ weiterlesen

Emerson hat die Einführung der Software Plantweb Optics Data Lake bekanntgegeben. Die Datenmanagement-Lösung identifiziert, erfasst und kontextualisiert unterschiedliche Daten in großem Maßstab entweder vor Ort in industriellen Anlagen oder mithilfe von Cloud-Technologie.‣ weiterlesen

Im September 2021 erscheint die Richtlinie VDI/VDE 2185 Blatt 2 'Funkgestützte Kommunikation in der Automatisierungstechnik - Koexistenzmanagement von Funksystemen'. Wenn unterschiedliche Funksysteme bei Automatisierungsaufgaben unterstützen, ist mit einer gegenseitigen Beeinflussung der Systeme zu rechnen.‣ weiterlesen

Klare Sicht auf das Werksgeschehen und die Rückverfolgbarkeit von Produkten und Prozessen sind zunehmend wichtige Erfolgsfaktoren. Mit dem MES Valeris will WSW Software gerade mittelständischen Fertigern helfen, diese Ziele zu erreichen. Das System soll schnell und günstig einsatzfähig sein, konfiguriert wird es in Eigenregie.‣ weiterlesen

Unternehmen verwalten heute mehr als zehn Mal so große Datenmengen wie noch vor fünf Jahren. Dabei befürchteten 62 % der Befragten in einer aktuellen Untersuchung von Dell Technologies, ihre Maßnahmen zur Datensicherung könnten nicht ausreichend vor Malware-Attacken schützen. 74 % der Umfrageteilnehmer gaben zudem an, dass mit der steigenden Anzahl an Home-Office-Mitarbeitern das Risiko von Datenverlust ansteige.‣ weiterlesen

Der MES-Anbieter Proxia Software kapselt Funktionen seiner Software, um Anwendern mehr Flexibilität beim Cloud-Betrieb ihres Produktionssteuerungssystems zu ermöglichen. Eine Datenvorverarbeitung im sogenannten Fog Layer soll durch eine geringere Anzahl an Transaktionen für mehr IT-Sicherheit und reduzierte Transaktionskosten sorgen.‣ weiterlesen

Thin Clients sind meist robust und wartungsarm. Mit ihrer Hardware-reduzierten Ausstattung eignen sie sich für Fabriken und Büros gleichermaßen. Wo die schlanken Geräte noch punkten, schreibt Ulrich Metz, Geschäftsführer bei Rangee.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige