Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Beitrag drucken

Erst die Anwendung, dann die Technologie

Wo die werksnahe IT von KI profitiert

Der Einfluss von künstlicher Intelligenz (KI) auf IT-Lösungen in der Fertigung lässt sich kaum leugnen. Von Predictive Quality bis hin zu Automated Data Science ist das Potenzial von KI-Anwendungen bereits jetzt groß – gerade auch in Verbindung mit historischen Daten aus dem Manufacturing Execution System.

Bild: ©Industrial Arts/stock.adobe.com

Bild: ©Industrial Arts/stock.adobe.com

Grundsätzlich hat sich an der Aufgabenstellung an die Fertigungs-IT wenig geändert – sie soll immer noch den Fertigungsbetrieb unterstützen bzw. optimieren. Was sich geändert hat, ist die Komplexität – Losgrößen werden kleiner, die Variantenvielfalt größer. In Folge dessen wächst die Datenflut, mit der sowohl Software als auch Menschen umgehen müssen. Dabei kann künstliche Intelligenz Abhilfe schaffen. Doch welche Anwendungen haben welches Potenzial, wenn man sie mit künstlicher Intelligenz anreichert?

Predictive Quality

Mit Predictive Quality hat der MES-Hersteller MPDV bereits ein konkretes Produktbeispiel umgesetzt: Grundannahme für die Vorhersage der Qualität ist, dass es auch zu Ausschuss oder Nacharbeit kommen kann, wenn sich alle Prozessparameter innerhalb der jeweils gültigen Toleranzen bewegen. Grund dafür sind komplexe Zusammenhänge und Wechselwirkungen, die oft auf die eigentliche Fertigungstechnologie zurückzuführen sind. Predictive Quality berücksichtigt das und gibt Mitarbeitern in der Fertigung die Möglichkeit, sofort zu sehen, ob der aktuell produzierte Artikel Ausschuss oder ein gutes Teil ist – unter Angabe der Eintrittswahrscheinlichkeit. Damit lässt sich etwa die Qualität eines Motorblocks vorhersagen, während dieser gerade noch abkühlt. So kann entschieden werden, ob es sich lohnt, weiter in ein Teil zu investieren oder ob es direkt wieder eingeschmolzen wird. Der Predictive Quality-Ansatz nutzt maschinelles Lernen und verarbeitet erfasste Prozessdaten in Echtzeit.

Rüstzeiten minimieren

Im Rahmen der Fertigungsplanung wird auf eine Reihe von Vorgabewerten zurückgegriffen, um eine Grundlage für die Bearbeitungsdauer eines Vorgangs und die Übergangszeiten zwischen zwei Vorgängen eines Auftrags zu haben. Die Rüstzeit ist eine dieser Vorgaben, die bisher meist manuell mit der Stoppuhr gemäß REFA-Verband ermittelt wird. KI kann diese Rüstzeitvorhersage unterstützen. Dazu wird auf Basis historischer Daten aus einem Manufacturing Execution System (MES) ein Modell erstellt, dass Faktoren – wie etwa die Länge der Rüstzeit bezogen auf die Kombinationen aus Artikel, Maschine, Werkzeug – berücksichtigt. Im Rahmen der Modellerstellung können die verwendeten historischen Daten auch auf ihre Eigenschaft als Einflussfaktor untersucht werden. Eine gängige Rüstwechselmatrix kommt dabei schnell an ihre Grenzen, da es einfach zu viele mögliche Kombinationen gibt. Der eigentliche Clou besteht jedoch in der Verwendung des erzeugten Modells und somit in der Vorhersage der Rüstzeit. Wird beispielsweise ein Arbeitsgang auf einer Maschine zu einem bestimmten Zeitpunkt mit einem bestimmten Werkzeug eingeplant, werden diese und gegebenenfalls weitere Daten verwendet, um auf Basis des zuvor erstellten Modells die wahrscheinliche Rüstzeit vorherzusagen. Auch für neue Kombinationen können Rüstzeiten auf Basis von Ähnlichkeitserwägungen abgeschätzt werden. Die KI agiert dabei im Wesentlichen so, wie die manuelle Pflege erfolgen würde. Was die Rüstzeitvorhersage im Vergleich mit der herkömmlichen Methode leisten kann, wurde auf Basis von mehreren realen Produktionsszenarien untersucht. Dabei zeigt sich, dass die KI-basierte Vorhersage den herkömmlichen Vorgabemechanismen deutlich überlegen ist. Aus Analysen geht hervor, dass durch den Einsatz von KI-Systemen rund 20 Prozent neue Kapazitäten in der Produktion frei werden.


Machine Learning
Nach Wikipedia ist Machine Learning bzw. Maschinelles Lernen “ein Oberbegriff für die ‘künstliche’ Generierung von Wissen aus Erfahrung: Ein künstliches System lernt aus Beispielen und kann diese nach Beendigung der Lernphase verallgemeinern. Dazu bauen Algorithmen beim maschinellen Lernen ein statistisches Modell auf, das auf Trainingsdaten beruht.”


Das könnte Sie auch interessieren:

Im Werkzeugmanagement eröffnet das Kennzeichnen von Assets mit Data Matrix Codes die Möglichkeit, Werkzeuge zu tracken und mit ihren Lebenslaufdaten zu verheiraten.‣ weiterlesen

Google Cloud gab kürzlich die Einführung der beiden Lösungen Manufacturing Data Engine und Manufacturing Connect bekannt. Mit den Tools lassen sich Assets einer Fertigungsumgebung vernetzen, Daten verarbeiten und standardisieren.‣ weiterlesen

Virtuelle multicloudfähige Plattformen können in Fertigungsbetrieben das Fundament bilden, um IT-Infrastruktur und Betriebsabläufe zu modernisieren und effizient zu betreiben. Denn das nahtlose Zusammenspiel von Cloud-Anwendungen, Softwarebereitstellung sowie Remote Work lassen sich mit digitalen Plattformen vergleichsweise einfach und global orchestrieren.‣ weiterlesen

Wibu-Systems ist Anwendungspartner im Projekt KoMiK. Im Mai wurde das Projekt abgeschlossen und der Karlsruher Lizensierungsspezialist hat zusammen mit den Projektpartnern aus Wirtschaft und Wissenschaft Empfehlungen zur Auswahl eines digitalen Kooperationssystems erarbeitet, inklusive eines Screening-Tools.‣ weiterlesen

MES-Lösungen verfügen über unterschiedliche Erweiterungsmodule, etwa für das Qualitätsmanagement. Der Ausbau der Basisfunktionen sorgt jedoch oft für Aufwand. Eine Alternative versprechen Cloudlösungen.‣ weiterlesen

Bei ihrer digitalen Transformation adaptieren Fertigungsunternehmen Technologien wie künstliche Intelligenz, Machine Learning und digitale Zwillinge. Cloud Computung hilft, dafür erforderliche Kapazitäten skaliert bereitzustellen.‣ weiterlesen

Mit mehreren neuen Partnern erweitert der Softwareanbieter ZetVisions sein Partnerangebot. Unter anderem sollen Pikon und People Consolidated das Beratungsangebot des Heidelberger Unternehmens ergänzen.‣ weiterlesen

Viele Deep-Learning- und Machine-Vision-Anwendungen stellen hohe Ansprüche an die eingesetzten Industrie-Rechner. Für den Einsatz in diesem Umfeld hat Hardware-Spezialist Spectra die PowerBox 4000AC C621A ins Programm genommen.‣ weiterlesen

Mit Hybrid Cloud-Lösungen wollen Firmen die Vorteile des privaten und öffentlichen Cloud-Betriebs erschließen. Managed Cloud Service Provider sind darin geschult, Fallstricke bei der Cloud-Nutzung solcher Infrastrukturen zu bewältigen.‣ weiterlesen

Per Low-Code-Tool können Anwender Prozesskonfigurationen selbst umsetzen. Im MES-Bereich ist dieser Ansatz noch selten zu finden, doch einige Lösungen gibt es bereits.‣ weiterlesen

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige