Anzeige
Anzeige
Beitrag drucken

Wie intelligent werden Prozesse und Produkte?

Was KI kann – und was nicht

Künstliche Intelligenz gilt als Schlüsseltechnologie. Doch durch den alleinigen Einsatz lösen sich nicht alle Probleme automatisch in Luft auf. Denn der Algorithmus ist nur so intelligent, wie es die Daten, aus denen er lernt, zulassen. Am Ende ist nicht der Einsatz der Technologie, sondern der Prozess entscheidend.

Einordnung von KI, ML und DL (Bild: Trebing & Himstedt Prozeßautomation)

Einordnung von KI, ML und DL (Bild: Trebing & Himstedt Prozeßautomation)

Ein großer deutscher Fabrikausrüster berichtete kürzlich über seine eigene Fertigung: Durch den Einsatz künstliche Intelligenz (KI) lassen sich dort pro Jahr zwischen 1 und 2Mio.? sparen. So wurde beispielsweise die Taktzeit um 15 Prozent gesenkt, in dem durch KI Störungen in den Prozessabläufen identifiziert und beseitigt wurden. Dabei ist zwar oftmals von KI die Rede, gemeint ist jedoch maschinelles Lernen (ML). Was ist der Unterschied? Künstliche Intelligenz bezeichnet primär alle Technologien, die menschliche Intelligenz nachahmen. Das Maschinelle Lernen ist eine Teildisziplin dessen – weil hier das Erlernen und Anwenden des Gelernten nachgeahmt wird. Beim ML erlernen Maschinen mit Hilfe von großen Datenmengen selbständig Aufgaben zu lösen. Noch spezifischer wird diese Disziplin wiederum im Deep Learning ausgeprägt. (Abbildung 1). Daraus ergeben sich oftmals zwei Missverständnisse.

  • • Erstens: künstliche Intelligenz löst alle Probleme quasi automatisch
  • • Zweitens: dadurch lassen sich signifikant Personalkosten sparen, da die Maschinen intelligent genug sind, um alles selber zu erledigen.

Missverständnis 1

Das erste Missverständnis lässt sich mit ‚garbage in – garbage out‘ klären. KI ist nicht von alleine intelligent, sondern lernt mittels ML aus vorhandenen Daten. Sind diese Daten qualitativ schlecht, wird es auch falsch nachgemacht. Der Algorithmus ist ein mathematisches Modell, welches aus dem Gelernten entstanden ist und per se erst einmal weder gut noch schlecht. Daher sollte ein Algorithmus, der aus dem ML entsteht keine ‚Black Box‘, sondern nachvollziehbar sein. Dabei hilft eine grobe Skizze. Ein KI-System funktioniert im Prinzip auf drei Ebenen: Was nehme ich war? Was kann ich ableiten? Wie muss ich reagieren? Die Wahrnehmung passiert über Sensorik, also Bewegungsdaten, und Stammdaten. Als Ergebnis wird dann wiederum eine Aktion zurückgespielt. Eine entscheidende Fähigkeit von KI-Systemen ist also, auf Basis von Daten Rückschlüsse auf den Zustand im Shopfloor – beispielsweise einer Maschine – ziehen zu können. Neben der Beurteilung können Unternehmen durch datenbasierte Methoden auch neue Erkenntnisse zu gewinnen. Prognosen liefern beispielsweise zusätzliche Informationen für die Entscheidungsfindung. Durch direkte Interaktion mit dem Shopfloor oder einem intelligenten Produkt können KI-Systeme lernen, welchen Einfluss bestimmte Aktionen hatten und welche Aktionen in Zukunft ausgeführt werden müssen, um ein bestimmtes Ziel zu erreichen. Somit löst KI nicht von Geisterhand alle Probleme, sondern wird explizit und begleitet für eine spezielle Problemlösung eingesetzt. Entweder, um eine Fabrik intelligenter zu gestalten oder neue Geschäftsmodelle zu etablieren. Der Schlüssel ist der Prozess, nicht die Technik.

Was kann ein KI-System? (Bild: Trebing & Himstedt Prozeßautomation)

Was kann ein KI-System? (Bild: Trebing & Himstedt Prozeßautomation)

Missverständnis 2

Wer, wie bereits angesprochen, KI einsetzen möchte, um Personalkosten zu sparen, sägt am falschen Ast. Zumal der Fachkräftemangel ohnehin ein Problem ist. Entscheidender ist es, die eigenen Prozesse so im Griff zu haben, dass sie gleichzeitig effizient und flexibel bzw. agil sind. Bis zu 70 Prozent der Kosten stecken verdeckt in Prozessen, die bisher aufgrund fehlender technischer Möglichkeiten nicht sichtbar gemacht werden konnten. Bei der Identifizierung dieser Kostentreiber kann Datenintelligenz ebenfalls helfen. Beispiele dafür sind Predictive Analytics, Predictive Quality oder die prozessübergreifende Visualisierung von Schwachstellen mit Hilfe von Process Mining. Dabei handelt es sich um eine KI-basierte Technik, die Geschäftsprozesse übergreifend auf Basis digitaler Spuren in IT-Systemen rekonstruieren und auswerten kann.

Agiler Ansatz um KI zu nutzen (Bild: Trebing & Himstedt Prozeßautomation)

Agiler Ansatz um KI zu nutzen (Bild: Trebing & Himstedt Prozeßautomation)

Fail fast, Scale fast

Ist die Berührungsangst mit künstlicher Intelligenz, Machine und Deep Learning erst einmal abgefallen, gilt es Erfahrungen zu sammeln. Das Vorgehen erfolgt idealerweise in zwei Schritten: zunächst in Experimenten schnell die unvermeidbaren Fehler machen (fail fast) und dann die erfolgreichen Experimente produktiv ausrollen (scale fast). Dabei muss ein erfolgreiches Experiment nicht das Projektergebnis sein, sondern oftmals schon ein Teilerfolg innerhalb eines Projektvorgehens. n bei Trebing + Himstedt.

Beitrag drucken

Wie intelligent werden Prozesse und Produkte?

Was KI kann – und was nicht

Künstliche Intelligenz gilt als Schlüsseltechnologie. Doch durch den alleinigen Einsatz lösen sich nicht alle Probleme automatisch in Luft auf. Denn der Algorithmus ist nur so intelligent, wie es die Daten zulassen, aus denen er lernt. Am Ende ist nicht der Einsatz der Technologie, sondern der Prozess entscheidend. (mehr …)


Das könnte Sie auch interessieren:

Der Automobilzulieferer Hirschmann Automotive muss Produktionsdaten bis zu 15 Jahre lang aufheben. Eigentlich lästig, doch mit dem Rollout einer IIoT-Plattform wird die Aufbewahrungspflicht zum Sprungbrett für Optimierungen. Denn einlaufende Maschinendaten ermöglichen Applikationen wie Echtzeit-Monitoring, datenbasierte Problembewältigung und sogar KI-Analysen.‣ weiterlesen

Wer Produktion und Logistik in einer Echtzeit-Visualisierung abbildet, kann niedrigschwellig in die digitale Transformation einsteigen und viel Papier aus dem Shopfloor bannen. Ergänzt um zentrale MES-Funktionen lassen sich solche Visualisierungssysteme zur Operational Excellence-Plattform ausprägen, die bei fortlaufenden Prozessoptimierungen unterstützt.‣ weiterlesen

Zum 1. Januar übernimmt Jörg Tewes den Posten des CEO bei Exasol. Er kommt von Amazon zum Analytics-Spezialisten.‣ weiterlesen

Industrielle Trends wie IIoT und Digitalisierung setzen immense Datenströme voraus. Doch im Gegensatz zur IT-Security für Büros müssen Fabrikbetreiber auf wesentlich mehr Stolpersteine achten, damit ihre Anlagen nicht schon einfachen Angriffen zum Opfer fallen.‣ weiterlesen

Ab und zu fehlte ein Schlüssel im Kloster der Franziskanerinnen der ewigen Anbetung von Schwäbisch Gmünd. Beim letzten Mal gab das den Impuls, anstatt neue mechanische Zylinder in die rund 220 Türen des Komplexes einzubauen, die alte Technik durch das Bluesmart-System von Winkhaus zu ersetzen.‣ weiterlesen

Mit 100,5 Punkten hält sich das IAB-Arbeitsmarktbarometer im November stabil und liegt weiter im leicht über der neutralen Marke. Auf europäischer Ebene sank der Frühindikator allerdings erneut.‣ weiterlesen

In einer neuen Expertise des Forschungsbeirats Industrie 4.0 untersuchen das FIR an der RWTH Aachen und das Industrie 4.0 Maturity Center den Status-quo und die aktuellen Herausforderungen der deutschen Industrie bei der Nutzung und wirtschaftlichen Verwertung von industriellen Daten und geben Handlungsempfehlungen für Unternehmen, Verbände, Politik und Wissenschaft.‣ weiterlesen